Using the fact that
$$\sum_{n=1}^\infty H_nx^n=-\frac{\ln(1-x)}{1-x}$$
Divide both sides by $x$ then integrate we have
\begin{align}
\sum_{n=1}^\infty\frac{H_n}{n}x^n&=-\int\frac{\ln(1-x)}{x(1-x)}\ dx\\
&=-\int\frac{\ln(1-x)}{x}\ dx-\int\frac{\ln(1-x)}{1-x}\ dx\\
&=\operatorname{Li}_2(x)+\frac12\ln^2(1-x)+C,\quad x=0\Rightarrow C=0
\end{align}
Then
$$\sum_{n=1}^\infty\frac{H_n}{n}x^n=\operatorname{Li}_2(x)+\frac12\ln^2(1-x)\tag i$$
Proof of (1):
Divide both sides of (i) by $x$ then integrate
\begin{align}
\sum_{n=1}^\infty\frac{H_n}{n^2}x^n&=\operatorname{Li}_3(x)+\frac12\underbrace{\int\frac{\ln^2(1-x)}{x}\ dx}_{IBP}\\
&=\operatorname{Li}_3(x)+\frac12\ln x\ln^2(1-x)+\underbrace{\int\frac{\ln x\ln(1-x)}{1-x}\ dx}_{IBP}\\
&=\operatorname{Li}_3(x)+\frac12\ln x\ln^2(1-x)+\operatorname{Li}_2(1-x)\ln(1-x)+\int\frac{\operatorname{Li}_2(1-x)}{1-x}\ dx\\
&=\small{\operatorname{Li}_3(x)+\frac12\ln x\ln^2(1-x)+\operatorname{Li}_2(1-x)\ln(1-x)-\operatorname{Li}_3(1-x)+C,\quad x=0\Rightarrow C=\zeta(3)}
\end{align}
Then
$$\small{\sum_{n=1}^\infty\frac{H_n}{n^2}x^n=\operatorname{Li}_2(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)}\tag{ii}$$
Proof of (2):
By Cauchy product we have
$$-\ln(1-x)\operatorname{Li}_2(x)=2\sum_{n=1}^\infty\frac{H_n}{n^2}x^n+\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}x^n-3\operatorname{Li}_3(x)\tag{iii}$$
From (ii) and (iii) we get
$$\small{\sum_{n=1}^\infty\frac{H_{n}^{(2)}}{n}x^{n}=\operatorname{Li}_3(x)+2\operatorname{Li}_3(1-x)-\ln(1-x)\operatorname{Li}_2(1-x)-\zeta(2)\ln(1-x)-2\zeta(3)}\tag{iv}$$
where I substituted, using the Dilogarithm reflection formula
$$\operatorname{Li}_2(x)=\zeta(2)-\ln x\ln(1-x)-\operatorname{Li}_2(1-x)$$
Proof of (3):
Using the generalization: (proved at the bottom)
$$\sum_{n=1}^\infty a_nx^n=\frac1{1-x}\sum_{n=1}^\infty (a_n-a_{n-1})x^n,\quad a_{0}=0\tag{v}$$
Let $a_{n}=H_n^2$ in (v) to have
\begin{align}
\sum_{n=1}^\infty H_n^2x^n&=\frac1{1-x}\sum_{n=1}^\infty \left(H_n^2-H_{n-1}^2\right)x^n\\
&=\frac1{1-x}\sum_{n=1}^\infty \left(\frac{2H_n}{n}-\frac1{n^2}\right)x^n\\
&=\frac1{1-x}\cdot 2\sum_{n=1}^\infty\frac{H_n}{n}x^n-\frac{\operatorname{Li}_2(x)}{1-x}\\
&=\frac1{1-x}\cdot 2\left(\operatorname{Li}_2(x)+\frac12\ln^2(1-x)\right)-\frac{\operatorname{Li}_2(x)}{1-x}\\
&=\frac{\ln^2(1-x)}{1-x}+\frac{\operatorname{Li}_2(x)}{1-x}\\
&=\frac{\ln^2(1-x)}{1-x}+\sum_{n=1}^\infty H_n^{(2)}x^n
\end{align}
Then
$$\sum_{n=1}^\infty (H_n^2-H_n^{(2)})x^{n}=\frac{\ln^2(1-x)}{1-x}\tag{vi}$$
Proof of (4):
Divide both sides of (vi) by $x$ then integrate we have
\begin{align}
\sum_{n=1}^\infty (H_n^2-H_n^{(2)})\frac{x^{n}}{n}&=\int\frac{\ln^2(1-x)}{x(1-x)}\ dx\\
&=\int\frac{\ln^2(1-x)}{x}\ dx+\int\frac{\ln^2(1-x)}{1-x}\ dx
\end{align}
the first integral is calculated in proof of (1) and its equal to
$$\ln x\ln^2(1-x)+2\ln(1-x)\operatorname{Li}_2(1-x)-2\operatorname{Li}_3(1-x)$$
then
$$\small{\sum_{n=1}^\infty (H_n^2-H_n^{(2)})\frac{x^{n}}{n}=\ln x\ln^2(1-x)+2\ln(1-x)\operatorname{Li}_2(1-x)-2\operatorname{Li}_3(1-x)-\frac13\ln^3(1-x)+C}$$
if we set $x=0$ we get $C=2\zeta(3)$
$$\small{\sum_{n=1}^\infty (H_n^2-H_n^{(2)})\frac{x^{n}}{n}=\ln x\ln^2(1-x)+2\ln(1-x)\operatorname{Li}_2(1-x)-2\operatorname{Li}_3(1-x)-\frac13\ln^3(1-x)+2\zeta(3)}\quad \text{(vii)}$$
from (iv) and (vii) we get
$$\sum_{n=1}^\infty\frac{H_{n}^2}{n}x^{n}=\operatorname{Li}_3(x)-\ln(1-x)\operatorname{Li}_2(x)-\frac13\ln^3(1-x)\tag{viii}$$
Proof of (5):
Let $a_n=H_n^3$ in (v) we get
\begin{align}
\sum_{n=1}^\infty H_n^3x^n&=\frac1{1-x}\sum_{n=1}^\infty (H_n^3-H_{n-1}^3)x^n\\
&=\frac1{1-x}\sum_{n=1}^\infty\left(\frac{3H_n^2}{n}-\frac{3H_n}{n^2}+\frac1{n^3}\right)x^n\\
&=\frac1{1-x}\cdot 3\sum_{n=1}^\infty\frac{H_n^2}{n}x^n-\frac1{1-x}\cdot 3\sum_{n=1}^\infty\frac{H_n}{n^2}x^n+\frac{\operatorname{Li}_3(x)}{1-x}
\end{align}
Combine the results from (ii) and (viii) we get
$$\small{\sum_{n=1}^\infty H_n^3x^n=
\frac{\operatorname{Li}_3(x)+3\operatorname{Li}_3(1-x)+\frac32\ln x\ln^2(1-x)-3\zeta(2)\ln(1-x)-\ln^3(1-x)-3\zeta(3)}{1-x}}\tag{ix}$$
Proof of (6):
Let $a_n=H_nH_n^{(2)}$ in (v) we get
\begin{align}
\sum_{n=1}^\infty H_nH_n^{(2)}x^n&=\frac1{1-x}\sum_{n=1}^\infty \left(H_nH_n^{(2)}-H_{n-1}H_{n-1}^{(2)}\right)x^n\\
&=\frac1{1-x}\sum_{n=1}^\infty\left(\frac{H_n}{n^2}+\frac{H_n^{(2)}}{n}-\frac1{n^3}\right)x^n\\
&=\frac1{1-x}\sum_{n=1}^\infty\frac{H_n}{n^2}x^n+\frac1{1-x}\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}x^n-\frac{\operatorname{Li}_3(x)}{1-x}
\end{align}
Substituting the results from (ii) and (iv) we get
$$\small{\sum_{n=1}^\infty H_nH_n^{(2)}x^n=
\frac{\operatorname{Li}_3(x)+\operatorname{Li}_3(1-x)+\frac12\ln x\ln^2(1-x)-\zeta(2)\ln(1-x)-\zeta(3)}{1-x}}\tag{x}$$
Proof of (7):
Combine the results from (ix) and (x) along with $\sum_{n=1}^\infty H_n^{(3)}x^n=\frac{\operatorname{Li}_3(x)}{1-x}$ we get
$$\sum_{n=1}^\infty\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)x^n=-\frac{\ln^3(1-x)}{1-x}$$
Different approach to prove (7):
again by using the generalization
$$\sum_{n=1}^\infty a_nx^n=\frac1{1-x}\sum_{n=1}^\infty (a_n-a_{n-1})x^n,\quad a_{0}=0$$
and setting $a_n=H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}$ we have
$$\sum_{n=1}^\infty \left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)x^n\\=\frac1{1-x}\sum_{n=1}^\infty\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}-H_{n-1}^3+3H_{n-1}H_{n-1}^{(2)}-2H_{n-1}^{(3)}\right)\\
=\frac1{1-x}\sum_{n=1}^\infty\left[3\left(\frac{H_n^2-H_n^{(2)}}{n}\right)-6\frac{H_n^{(2)}}{n}+\frac6{n^3}\right]x^n\\
=\frac1{1-x}\cdot3\sum_{n=1}^\infty\left(H_n^2-H_n^{(2)}\right)\frac{x^n}{n}-\frac1{1-x}\cdot 6\sum_{n=1}^\infty\frac{H_n}{n^2}x^n+\frac{6\operatorname{Li}_3(x)}{1-x}$$
Combine the results from (ii) and (vii) we get
$$\sum_{n=1}^\infty\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)x^n=-\frac{\ln^3(1-x)}{1-x}$$
Proof of the generalization:
\begin{align}
\color{blue}{1}\sum_{n=0}^\infty a_nx^n&=\left(\color{blue}{\frac1{1-x}-\frac{x}{1-x}}\right)\sum_{n=0}^\infty a_nx^n\\
&=\frac1{1-x}\sum_{n=0}^\infty a_nx^n-\frac1{1-x}\sum_{n=0}^\infty a_nx^{n+1}\\
&=\frac1{1-x}\sum_{n=0}^\infty a_nx^n-\frac1{1-x}\sum_{n=1}^\infty a_{n-1}x^{n},\quad \text{assuming}\ \color{red}{a_{0}=0}\\
\sum_{n=\color{red}{1}}^\infty a_nx^n&=\frac1{1-x}\sum_{n=\color{red}{1}}^\infty a_nx^n-\frac1{1-x}\sum_{n=1}^\infty a_{n-1}x^{n}
\end{align}
Then
$$\sum_{n=1}^\infty a_nx^n=\frac1{1-x}\sum_{n=1}^\infty (a_n-a_{n-1})x^n,\quad a_{0}=0$$