Here is a proof for your sum not the integral,
From here we have
$$\frac12\int_0^y\frac{\ln x\ln^2(1-x)}{x}dx=\operatorname{Li}_4(y)-\ln y\operatorname{Li}_3(y)+\ln y\sum_{n=1}^\infty\frac{H_n}{n^2}y^n-\sum_{n=1}^\infty\frac{H_n}
{n^3}y^n$$
Substitute
$$\sum_{n=1}^\infty\frac{H_{n}}{n^2}y^{n}=\operatorname{Li}_3(y)-\operatorname{Li}_3(1-y)+\ln(1-y)\operatorname{Li}_2(1-y)+\frac12\ln y\ln^2(1-y)+\zeta(3)$$
and
$$\frac12\int_0^y\frac{\ln x\ln^2(1-x)}{x}dx$$
$$=\frac14\ln^2y\ln^2(1-y)-\frac16\ln^3y\ln(1-y)+\frac1{24}\ln^4(1-y)+\frac16\ln^3\left(\frac{y}{1-y}\right)\ln(1-y)\\-\frac12\ln^2\left(\frac{y}{1-y}\right)\operatorname{Li}_2\left(\frac{y}{y-1}\right)+\ln \left(\frac{y}{1-y}\right)\operatorname{Li}_3\left(\frac{y}{y-1}\right)-\operatorname{Li}_4\left(\frac{y}{y-1}\right)-\frac12\ln^2y\operatorname{Li}_2(y)\\+\ln y\operatorname{Li}_3(y)-\operatorname{Li}_4(y)+\frac12\ln^2(1-y)\operatorname{Li}_2(1-y)-\ln (1-y)\operatorname{Li}_3(1-y)+\operatorname{Li}_4(1-y)-\zeta(4)$$
we obtain that
$$\sum_{n=1}^\infty\frac{H_n}{n^3}y^n$$
$$=\zeta(4)-\frac1{24}\ln^4(1-y)+\frac16\ln^3y\ln(1-y)-\frac16\ln^3\left(\frac{y}{1-y}\right)\ln(1-y)+\frac14\ln^2y\ln^2(1-y)$$
$$-\frac12\ln^2(1-y)\operatorname{Li}_2(1-y)+\frac12\ln^2y\operatorname{Li}_2(y)+\ln (1-y)\operatorname{Li}_3(1-y)-\ln y\operatorname{Li}_3(y)$$
$$-\ln y\operatorname{Li}_3(1-y)+\ln y\ln(1-y)\operatorname{Li}_2(1-y)+\zeta(3)\ln y+2\operatorname{Li}_4(y)-\operatorname{Li}_4(1-y)$$
$$+\frac12\ln^2\left(\frac{y}{1-y}\right)\operatorname{Li}_2\left(\frac{y}{y-1}\right)-\ln \left(\frac{y}{1-y}\right)\operatorname{Li}_3\left(\frac{y}{y-1}\right)+\operatorname{Li}_4\left(\frac{y}{y-1}\right)$$
If we use Landen's identity
$$\operatorname{Li}_2(y)+\operatorname{Li}_2\left(\frac{y}{y-1}\right)=-\frac12\ln^2(1-y)$$
and
$$\operatorname{Li}_3(1-y)+\operatorname{Li}_3(y)+\operatorname{Li}_3\left(\frac{y}{y-1}\right)=\zeta(3)+\frac16\ln^3(1-y)-\frac12\ln^2y\ln(1-y)+\zeta(2)\ln y$$
the sum simplifies to
\begin{align}
\sum_{n=1}^\infty\frac{H_n}{n^3}y^n&=\operatorname{Li}_4\left(\frac{y}{y-1}\right)-\frac12\operatorname{Li}_2^2\left(\frac{y}{y-1}\right)+2\operatorname{Li}_4(y)-\operatorname{Li}_4(1-y)-\ln(1-y)\operatorname{Li}_3(y)\\
&\quad +\frac12\ln^2(1-y)\operatorname{Li}_2(y)+\frac12\operatorname{Li}_2^2(y)+\frac16\ln^4(1-y)-\frac16\ln y\ln^3(1-y)\\
&\quad+\frac12\zeta(2)\ln^2(1-y)+\zeta(3)\ln(1-y)+\zeta(4)
\end{align}
To get your integral, integrate by parts
$$\int_0^y\frac{\ln(1-x)\operatorname{Li}_2(1-x)}{x}dx=\operatorname{Li}_2(y)\operatorname{Li}_2(1-y)+\int_0^y\frac{\ln x\operatorname{Li}_2(x)}{1-x}dx$$
$$=\operatorname{Li}_2(y)\operatorname{Li}_2(1-y)+\sum_{n=1}^\infty \left(H_n^{(2)}-\frac1{n^2}\right)\int_0^y x^{n-1}\ln x\ dx$$
$$=\operatorname{Li}_2(y)\operatorname{Li}_2(1-y)+\sum_{n=1}^\infty \left(H_n^{(2)}-\frac1{n^2}\right)\left(\ln y\frac{y^n}{n}-\frac{y^n}{n^2}\right)$$
$$=\operatorname{Li}_2(y)\operatorname{Li}_2(1-y)-\ln y\operatorname{Li}_3(y)+\operatorname{Li}_4(y)+\ln y\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}y^n-\sum_{n=1}^\infty\frac{H_n^{(2)}}{n^2}y^n$$
by Cauchy product we have
$$\frac12\operatorname{Li}_2^2(y)=2\sum_{n=1}^\infty\frac{H_n}{n^3}y^n+\sum_{n=1}^\infty\frac{H_n^{(2)}}{n^2}y^n-3\operatorname{Li}_4(y)$$
which gives
$$\int_0^y\frac{\ln(1-x)\operatorname{Li}_2(1-x)}{x}dx$$
$$=\operatorname{Li}_2(y)\operatorname{Li}_2(1-y)-\frac12\operatorname{Li}_2^2(y)-\ln y\operatorname{Li}_3(y)-2\operatorname{Li}_4(y)+\ln y\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}y^n+2\sum_{n=1}^\infty\frac{H_n}{n^3}y^n$$
where
$$\sum_{n=1}^\infty\frac{H_{n}^{(2)}}{n}y^{n}=\operatorname{Li}_3(y)+2\operatorname{Li}_3(1-y)-\ln(1-y)\operatorname{Li}_2(1-y)-\zeta(2)\ln(1-y)-2\zeta(3)$$
$$\operatorname{Li}_2(1-t) = -\int^{1-t}_0 \frac{\log(1-x)}{x}, dx$$
– Zaid Alyafeai Aug 21 '13 at 00:43$$\int^1_0 \frac{\text{Li}2(x)}{1-x}, \log(x),dx = \sum{k\geq 1}\frac{H_k^{(2)}}{k^2}-2\sum_{k\geq 1}\frac{H_k}{k^3}=\frac{-\pi^4}{120}$$
– Zaid Alyafeai Aug 21 '13 at 03:33