Hi I am stuck on showing that $$ \int_0^\infty \frac{\ln(1+x)\ln(1+x^{-2})}{x} dx=\pi G-\frac{3\zeta(3)}{8} $$ where G is the Catalan constant and $\zeta(3)$ is the Riemann zeta function. Explictly they are given by $$ G=\beta(2)=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2}, \ \zeta(3)=\sum_{n=1}^\infty \frac{1}{n^3}. $$ I have tried using $$ \ln(1+x)=\sum_{n=1}^\infty \frac{(-1)^{n+1} x^n}{n}, $$ but didn't get very far.
4 Answers
The infinite sum in Chen Wang's answer, that is, $ \displaystyle \sum_{n=1}^{\infty} \frac{H_{4n}}{n^{2}}$, can be evaluated using contour integration by considering the function $$f(z) = \frac{\pi \cot(\pi z) [\gamma + \psi(-4z)]}{z^{2}}, $$
where $\psi(z)$ is the digamma function and $\gamma$ is the Euler-Mascheroni constant.
The function $f(z)$ has poles of order $2$ at the positive integers, simple poles at the negative integers, simple poles at the positive quarter-integers, and a pole of order $4$ at the origin.
The function $\psi(-4z)$ does have simple poles at the positive half-integers, but they are cancelled by the zeros of $\cot( \pi z)$.
Now consider a square on the complex plane (call it $C_{N}$) with vertices at $\pm (N + \frac{1}{2}) \pm i (N +\frac{1}{2})$.
On the sides of the square, $\cot (\pi z)$ is uniformly bounded.
And when $z$ is large in magnitude and not on the positive real axis, $\psi(-4z) \sim \ln(-4z)$.
So $ \displaystyle \int_{C_{N}} f(z) \ dz $ vanishes as $N \to \infty$ through the positive integers.
Therefore,
$$\sum_{n=1}^{\infty} \text{Res} [f(z), n] + \sum_{n=1}^{\infty} \text{Res}[f(z),-n] + \text{Res}[f(z),0] + \sum_{n=0}^{\infty} \text{Res}\Big[f(z), \frac{2n+1}{4} \Big] =0 .$$
To determine the residues, we need the following Laurent expansions.
At the positive integers,
$$ \gamma + \psi (-4z) = \frac{1}{4} \frac{1}{z-n} + H_{4n} + \mathcal{O}(z-n) $$
and
$$ \pi \cot (\pi z) = \frac{1}{z-n} + \mathcal{O}(z-n) .$$
At the origin,
$$ \gamma+ \psi(-4z) = \frac{1}{4z} -4 \zeta(2) z -16 \zeta(3) z^{2} + \mathcal{O}(z^{3})$$
and $$ \pi \cot (\pi z) = \frac{1}{z} - 2 \zeta(2) z + \mathcal{O}(z^{3}) .$$
And at the positive quarter-integers,
$$ \gamma + \psi(-4z) = \frac{1}{4} \frac{1}{z-\frac{2n+1}{4}} + \mathcal{O}(1)$$
and
$$ \pi \cot (\pi z) = (-1)^{n} \pi + \mathcal{O}\Big(z- \frac{2n+1}{4} \Big) .$$
Then at the positive integers,
$$f(z) = \frac{1}{z^{2}} \Big( \frac{1}{4} \frac{1}{(z-n)^{2}} + \frac{H_{4n}}{z-n} + \mathcal{O}(1) \Big), $$
which implies
$$\begin{align} \text{Res} [f(z),n] &= \text{Res} \Big[ \frac{1}{4z^{2}} \frac{1}{(z-n)^{2}} , n \Big] + \text{Res} \Big[ \frac{1}{z^{2}} \frac{H_{4n}}{z-n}, n \Big] \\ &= - \frac{1}{2n^{3}} + \frac{H_{4n}}{n^{2}} .\end{align}$$
At the negative integers,
$$ \text{Res}[f(z),-n] = \frac{\gamma + \psi(4n)}{n^{2}} = \frac{H_{4n-1}}{n^{2}} = \frac{H_{4n}}{n^{2}} - \frac{1}{4n^{3}} . $$
At the origin,
$$ f(z) = \frac{1}{z^{2}} \Big( \frac{1}{4z^{2}} - \frac{\zeta(2)}{2} - 4 \zeta(2) - 16 \zeta(3) z + \mathcal{O}(z^{2}) \Big),$$
which implies
$$\text{Res}[f(z),0] = -16 \zeta(3) .$$
And at the positive quarter-integers,
$$ f(z) = \frac{\pi}{4z^{2}} \frac{(-1)^{n}}{z- \frac{2n+1}{4}} + \mathcal{O}(1),$$
which implies
$$ \begin{align} \text{Res} \Big[ f(z),\frac{2n+1}{4} \Big] &= \text{Res} \Big[\frac{\pi}{4z^{2}} \frac{(-1)^n}{z- \frac{2n+1}{4}}, \frac{2n+1}{4} \Big] \\ &= 4 \pi \ \frac{(-1)^{n}}{(2n+1)^{2}} . \end{align} $$
Putting everything together, we have
$$ - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3}} + 2 \sum_{n=1}^{\infty} \frac{H_{4n}}{n^{2}} - \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}} - 16 \zeta(3) + 4 \pi \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^{2}} $$
$$ = - \frac{1}{2} \zeta(3) + 2 \sum_{n=1}^{\infty} \frac{H_{4n}}{n^{2}} - \frac{1}{4} \zeta(3) - 16 \zeta(3) + 4 \pi G = 0 .$$
Therefore,
$$ \sum_{n=1}^{\infty} \frac{H_{4n}}{n^{2}} = \frac{67}{8} \zeta(3) - 2 \pi G .$$
EDIT:
I found the Laurent expansion of $\psi(-4z)$ at the positive integers by using the functional equation of the digamma function to express $\psi(4z)$ as
$$ \psi(4z) = \psi(4z+4n+1) - \frac{1}{4z+4n} - \frac{1}{4z+4n-1} - \ldots - \frac{1}{4z} .$$
Then I evaluated the limit $$\lim_{z \to -n} (z+n) \psi(4z) = - \frac{1}{4}$$ and the limit $$\lim_{z \to -n} \Big(\psi(4z) + \frac{1}{4} \frac{1}{z+n} \Big) = - \gamma +H_{4n} .$$
This leads to the expansion $$\gamma + \psi (-4z) = \frac{1}{4} \frac{1}{z-n} + H_{4n} + \mathcal{O}(z-n) .$$
I did something similar to find the expansion at the positive quarter-integers.

- 42,026
-
3That is really nice! – Chen Wang Apr 01 '14 at 20:56
-
1@ChenWang Thanks. – Random Variable Apr 01 '14 at 21:02
-
1@RandomVariable I have just noticed that you have posted the solution to this. I never have realized. Thanks so much, and also sorry for such a delay. This is excellent work I have to go through! – Jeff Faraci Apr 16 '14 at 19:51
I have a simple solution for this problem. Let $$ I(\alpha,\beta)=\int_0^\infty\frac{\ln(1+\alpha x)\ln(1+\beta x^{-2})}{x}dx. $$ Then $I(0,0)=I(\alpha,0)=I(0,\beta)=0$ and $I(1,1)=I$. It is easy to check \begin{eqnarray*} \frac{\partial^2 I}{\partial \alpha\partial\beta}&=&\int_0^\infty\frac{1}{(1+\alpha x)(x^2+\beta)}dx\\ &=&\frac{1}{2}\left(\frac{\pi}{\sqrt{\beta}}+2\alpha\ln\alpha+\alpha\ln\beta\right)\frac{1}{1+\alpha^2\beta}\\ &=&\frac{1}{2}\left(\frac{\pi}{\sqrt{\beta}}+2\alpha\ln\alpha+\alpha\ln\beta\right)\sum_{n=0}^\infty(-1)^n\alpha^{2n}\beta^n\\ &=&\frac{1}{2}\left(\pi\sum_{n=0}^\infty(-1)^n\alpha^{2n}\beta^{n-\frac{1}{2}}+2\sum_{n=0}^\infty(-1)^n(\alpha^{2n+1}\ln\alpha)\beta^n+\sum_{n=0}^\infty(-1)^n\alpha^{2n+1}\beta^n\ln\beta\right). \end{eqnarray*} Thus \begin{eqnarray*} I&=&\int_0^1\int_0^1\frac{\partial^2 I}{\partial \alpha\partial\beta}d\beta d\alpha\\ &=&\frac{1}{2}\int_0^1\left(\pi\sum_{n=0}^\infty\frac{(-1)^n}{n+\frac{1}{2}}\alpha^{2n}+2\sum_{n=0}^\infty\frac{(-1)^n}{n+1}\alpha^{2n+1}\ln\alpha-\sum_{n=0}^\infty\frac{(-1)^n}{(n+1)^2}\alpha^{2n+1}\right)d\alpha\\ &=&\pi\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^2}-\sum_{n=0}^\infty\frac{(-1)^n}{4(n+1)^3}-\frac{1}{2}\sum_{n=0}^\infty\frac{(-1)^n}{2(n+1)^3}\\ &=&\pi G-\frac{1}{2}\sum_{n=0}^\infty\frac{(-1)^n}{(n+1)^3}\\ &=&\pi G-\frac{3\zeta(3)}{8}. \end{eqnarray*} Here we use $$\int_0^1 x^n\ln x dx=-\frac{1}{(n+1)^2}. $$

- 44,000
Incomplete answer:
$$ \begin{align*} I&=\int^{\infty}_{0}\frac{\log(1+x)\log(1+x^{-2})}{x}dx\\ &=\int^{1}_{0}\frac{\log(1+x)\log(1+x^{-2})}{x}dx+\int^{\infty}_{1}\frac{\log(1+x)\log(1+x^{-2})}{x}dx\\ &=\int^{1}_{0}\frac{\log(1+x)\log(1+x^{-2})}{x}dx+\int^{1}_{0}\frac{\log(1+x^{-1})\log(1+x^2)}{x}dx\\ &=2\underbrace{\int^{1}_{0}\frac{\log(1+x)\log(1+x^2)}{x}dx}_{=I_1}-\underbrace{\int^{1}_{0}\frac{\log(x)(2\log(1+x)+\log(1+x^2))}{x}dx}_{=I_2}.\\ \end{align*} $$
$$ \begin{align*} I_2&=\int^{1}_{0}\frac{\log(x)(2\log(1+x)+\log(1+x^2))}{x}dx\\ &=\sum^{\infty}_{n=1}\frac{(-1)^{n+1}}{n}\int^{1}_{0}\frac{\log(x)(2x^n+x^{2n})}{x}dx\\ &=\sum^{\infty}_{n=1}\frac{(-1)^{n+1}}{n}\left(-\frac{2}{n^2}-\frac{1}{(2n)^2}\right)\\ &=\frac{27}{16}\zeta(3). \end{align*} $$
$$ \begin{align*} I_1&=\int^{1}_{0}\frac{\log(1+x)\log(1+x^2)}{x}dx\\ &=\sum^{\infty}_{m,n=1}\frac{(-1)^{m+n}}{mn}\int^{1}_{0}x^{2m+n-1}dx\\ &=\sum^{\infty}_{m,n=1}\frac{(-1)^{m+n}}{mn(2m+n)}\\ &=\sum^{\infty}_{m=1}\frac{(-1)^{m}}{m}\sum^{\infty}_{n=1}\frac{(-1)^{n}}{n(2m+n)}\\ &=\sum^{\infty}_{m=1}\frac{(-1)^{m}}{2m^2}\sum^{\infty}_{n=1}(-1)^{n}\left(\frac{1}{n}-\frac{1}{2m+n}\right)\\ &=\sum^{\infty}_{m=1}\frac{(-1)^{m}}{2m^2}\left(\sum^{\infty}_{n=1}\frac{(-1)^{n}}{n}-\sum^{\infty}_{n=1}\frac{(-1)^{2m+n}}{2m+n}\right)\\ &=\sum^{\infty}_{m=1}\frac{(-1)^{m}}{2m^2}\sum^{2m}_{n=1}\frac{(-1)^{n}}{n}\\ &=\sum^{\infty}_{m=1}\frac{(-1)^{m-1}(H_{2m}-H_{m})}{2m^2}\\ &=\sum^{\infty}_{m=1}\frac{H_{2m}-H_{m}}{2m^2}-2\sum^{\infty}_{m=1}\frac{H_{4m}-H_{2m}}{2(2m)^2}\\ &=\frac14\sum^{\infty}_{m=1}\frac{-H_{4m}+3H_{2m}-2H_{m}}{m^2}\\ &=-\frac14\sum^{\infty}_{m=1}\frac{H_{4m}}{m^2}+\frac{17}{16}\zeta(3) \end{align*}$$
Therefore, $I=2I_1-I_2=-\frac12\sum^{\infty}_{m=1}\frac{H_{4m}}{m^2}+\frac{61}{16}\zeta(3)$.
It remains to prove that $\sum^{\infty}_{m=1}\frac{H_{4m}}{m^2}\stackrel?=\frac{67}{8}\zeta(3)-2\pi G$, but I haven't found a way yet.

- 4,445
- 27
- 31
-
I will have to go through all of this. Evaluating the Harmonic number sums always seems rather difficult...This is more complete than any other answer, so Thanks! If you can come up with the proof for that last sum, I will gladly check it as the answer:) Thanks for your time – Jeff Faraci Mar 31 '14 at 16:49
$$I=\int_0^\infty\frac{\ln(1+x)\ln(1+x^{-2})}{x}\ dx=\int_0^\infty f(x)\ dx=\int_0^1 f(x)\ dx+\underbrace{\int_1^\infty f(x)\ dx}_{x\to1/x}$$
$$=2\underbrace{\int_0^1\frac{\ln(1+x)\ln(1+x^2)}{x}\ dx}_{\large I_1}-\frac94\underbrace{\int_0^1\frac{\ln x\ln(1+x)}{x}\ dx}_{-3/4\zeta(3)}$$
$$I_1=\sum_{m=1}^\infty\frac{(-1)^{m-1}}{m}\int_0^1 x^{2m-1}\ln(1+x)\ dx$$
$$=\sum^{\infty}_{m=1}\frac{(-1)^{m-1}(H_{2m}-H_{m})}{2m^2}=\frac12\sum_{m=1}^\infty \frac{(-1)^mH_m}{m^2}-\frac12\sum_{m=1}^\infty \frac{(-1)^mH_{2m}}{m^2}$$
The first sum $\sum_{m=1}^\infty \frac{(-1)^mH_m}{m^2}=-\frac58\zeta(3)$ is well known and the second one :
$$\sum_{m=1}^\infty \frac{(-1)^mH_{2m}}{m^2}=4\sum_{m=1}^\infty \frac{(-1)^mH_{2m}}{(2m)^2}=4\Re\sum_{m=1}^\infty \frac{(i)^mH_{m}}{m^2}$$
By using the generating function
$$\sum_{n=1}^\infty\frac{H_{n}}{n^2}x^{n}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)$$ and setting $x=i$ we get
$$\sum_{m=1}^\infty \frac{(-1)^mH_{2m}}{m^2}=4\Re\left\{\operatorname{Li}_3(i)-\operatorname{Li}_3(1-i)+\ln(1-i)\operatorname{Li}_2(1-i)+\frac12\ln(i)\ln^2(1-i)+\zeta(3)\right\}\\=\frac{23}{16}\zeta(3)-\pi\ G $$
Collect all results we get $\displaystyle I=\pi G-\frac{3\zeta(3)}{8}$

- 25,498