$$I=\int_0^{1}\frac{\ln\left(1+x\right)\ln\left(1+\frac{1}{x^2}\right)}{x}\,dx+\int_1^{\infty}\frac{\ln\left(1+x\right)\ln\left(1+\frac{1}{x^2}\right)}{x}\,dx$$
$$\int_1^{\infty}\frac{\ln\left(1+x\right)\ln\left(1+\frac{1}{x^2}\right)}{x}\,dx=\int_0^{1}\frac{\ln\left(\frac{1+x}{x}\right)\ln\left(1+{x^2}\right)}{x}\,dx$$
$$I=2\int_0^{1}\frac{\ln\left(1+x\right)\ln\left(1+{x^2}\right)}{x}\,dx-\frac{9}{4}\int_0^{1}\frac{\ln\left(1+x\right)\ln\left(x\right)}{x}\,dx={\pi}G-\frac{3}{8}\zeta(3)$$
These integrals are known
$$\int_0^{1}\frac{\ln\left(1+x\right)\ln\left(1+{x^2}\right)}{x}\,dx=-\frac{33}{32}\zeta(3)+\frac{\pi}{2}G,\int_0^{1}\frac{\ln\left(1+x\right)\ln\left(x\right)}{x}\,dx=-\frac{3}{4}\zeta(3)$$