4

Evaluate$$ \int_0^{\infty}{\frac{\arctan x\operatorname{Li}_2(-x)}{x^2}dx}$$ My attempt: By Integrating by parts I got $$ I=0+\int_0^\infty \frac{\ln(x+1)}{x}\left( \ln x-\frac{1}{2}\ln \left( x^2+1 \right) \right) \, dx-\int_0^\infty \frac{\arctan x\ln \left( x+1 \right)}{x^2} \, dx=I_1-I_2 $$ $I_2$ can be evaluated by integrating by parts again. $$ I_2=0-\int_0^\infty \frac{1}{1+x^2}\left( \ln x-\ln \left( x+1 \right) -\frac{\ln(x+1)}{x} \right) \, dx \\ =-0+G+\frac{1}{4}\pi \ln 2+\frac{5}{48}\pi^2 $$ But I have no idea to deal with $I_1$. I tried integrating by parts and substitute $x\to\frac1x$ but I got nothing.

Kemono Chen
  • 8,629

1 Answers1

2

You can write $$I_1 = \frac{1}{2} \int \limits_0^\infty \frac{\ln(1+x)}{x} \ln \left(\frac{x^2}{1+x^2}\right) \, \mathrm{d} x = - \frac{1}{2} \int \limits_0^\infty \frac{\ln(1+x) \ln(1+x^{-2})}{x} \, \mathrm{d} x $$ and then have a look at this question to obtain the answer suggested in the comments.