$\displaystyle\sum_{n=1}^{+\infty}\frac{(-1)^n\ H_n^2}{(2n+1)}$
Solution:
I'm used:
$\displaystyle\pmb{\sum^{+\infty}_{n=1}\mathrm{H_n^2}(-1)^{n}x^n=\frac{\mathrm{Li_2(-x)}}{1+x}+\frac{\mathrm{ln}^2(1+x)}{1+x}}$
$\displaystyle{\int_{0}^{1}}\left(\sum^{+\infty}_{n=1}\mathrm{H_n^2}(-1)^{n}x^{2n}\right){\mathrm{dx}}={\int_{0}^{1}}\left(\frac{\mathrm{Li_2(-x^2)}}{1+x^2}+\frac{\mathrm{ln}^2(1+x^2)}{1+x^2}\right){\mathrm{dx}}\xrightarrow{\textbf{then}}\sum^{+\infty}_{n=1}\frac{\mathrm{H_n^2}(-1)^{n}}{2n+1}=\underbrace{\int_{0}^{1}\frac{\mathrm{Li_2(-x^2)}}{1+x^2}\mathrm{dx}}_{\pmb{I_1}}+\underbrace{\int_{0}^{1}\frac{\mathrm{ln}^2(1+x^2)}{1+x^2}\mathrm{dx}}_{\pmb{I_2}}$
$\displaystyle I_1=\int_{0}^{1}\frac{\mathrm{Li_2(-x^2)}}{1+x^2}\mathrm{dx}=\int_{0}^{1}(Li_2(ix)+Li_2(-ix))\left(\frac{1}{1-ix}+\frac{1}{1+ix}\right)\mathrm{dx}\textbf{ ; } xi=u\longrightarrow i\mathrm{d(x)}=\mathrm{d(u)}$
$\displaystyle I_1=\frac{1}{i}(2Li_3(1-xi)-2Li_3(1+xi)-2Li_2(1-xi)\cdot ln(1-xi)-Li_2(xi)\cdot ln(1-xi)-Li_2(-xi)\cdot ln(1-xi)$
$\displaystyle +Li_2(-xi)\cdot ln(1+xi)+Li_2(xi)\cdot ln(1+xi)+2Li_2(1+xi)\cdot ln(1+xi)-ln(xi)\cdot ln^2(1-xi)+ln(-xi)\cdot ln^2(1+xi))\left.\frac{}{}\right|_0^1$
$\displaystyle I_1=\left[\frac{\pi^2}{3}-ln(1+x^2)\cdot ln(x)\right]2\arctan(x) -\pi\arctan^2(x)+\frac{\pi}{4}\cdot ln^2(1+x^2)+2\mathrm{Ti_2}(x)\cdot ln(1+x^2)-4\ \mathrm{Im}(Li_3(1+ix))\left.\frac{}{}\right|_0^1$
$\displaystyle \pmb{I_1=\frac{5\pi^3}{48}+\frac{\pi}{4}ln^2(2)+2G\cdot ln(2)-4\ \mathrm{Im}(Li_3(1+i)) }$
In $I_2$:
$\displaystyle\int_{0}^{1}\frac{ln^2(1+x^2)}{1+x^2}\mathrm{dx}=\int_{0}^{\pi/4} ln^2(1+tan^2(x))\ dx=4\int_{0}^{\pi/4} ln^2(cos(x))\ dx=4\int_{\pi/4}^{\pi/2} ln^2(sin(x))\ dx=$
$\displaystyle\underbrace{4\int_{\pi/4}^{\pi/2} ln^2(2sin(x))\ dx}_{\pmb{\displaystyle I_{2,1}}}\underbrace{-8ln(2)\int_{\pi/4}^{\pi/2} ln(2sin(x))\ dx}_{\displaystyle\pmb{I_{2,2}}}+\underbrace{4\int_{\pi/4}^{\pi/2}ln^2(2)\ dx}_{\displaystyle\pmb{I_{2,3}}}$
$\displaystyle \pmb{I_{2,1}}=4\int_{\pi/4}^{\pi/2} ln^2(2sin(x))\ dx=4\int_{\pi/4}^{\pi/2} \left(2\left(\sum_{n=1}^{+\infty}\left(\frac{H_{n}}{n}-\frac{1}{n^2}\right)cos(2nx)\right)+\left(\frac{\pi}{2}-x\right)^2\right)\ dx=$
$\displaystyle 4\left(\sum_{n=1}^{+\infty}\left(\frac{H_{n}}{n^2}-\frac{1}{n^3}\right)\left((sin(n\pi)-sin\left(\frac{n\pi}{2}\right)\right)-\left.\frac{1}{3}\left(\frac{\pi}{2}-x\right)^3\right|_{\pi/4}^{\pi/2}\right)=-4\sum_{n=1}^{+\infty}\left(\frac{H_{n}}{n^2}-\frac{1}{n^3}\right)sin\left(\frac{n\pi}{2}\right)+\frac{\pi^3}{48}$
$\displaystyle -4\ \mathrm{Im}\left(\sum_{n=1}^{+\infty}\left(\frac{H_{n}}{n^2}-\frac{1}{n^3}\right)e^{in\pi/2}\right)+\frac{\pi^3}{48}=$
$\displaystyle -4\ \mathrm{Im}\left(-\mathrm{Li_{3}}(1-\mathrm{e^{\pi i/2}})+\mathrm{Li_{2}}(1-\mathrm{e^{\pi i/2}})\cdot\mathrm{\ln}(1-\mathrm{e^{\pi i/2}})+
\frac{1}{2}\mathrm{\ln}(\mathrm{e^{\pi i/2}})\cdot\mathrm{\ln}^2(1-\mathrm{e^{\pi i/2}})+\zeta(3)\right)+\frac{\pi^3}{48}$
$\displaystyle -4\ \mathrm{Im}\left(-\mathrm{Li_{3}}(1-i)+\mathrm{Li_{2}}(1-i)\cdot\mathrm{\ln}(1-i)+
\frac{1}{2}\mathrm{\ln}(i)\cdot\mathrm{\ln}^2(1-i)+\zeta(3)\right)+\frac{\pi^3}{48}$
$\displaystyle -4\ \mathrm{Im}\left(\mathrm{Li_{3}}(1+i)+\mathrm{Li_{2}}(1-i)\cdot\mathrm{\ln}(1-i)+
\frac{1}{2}\mathrm{\ln}(i)\cdot\mathrm{\ln}^2(1-i)+\zeta(3)\right)+\frac{\pi^3}{48}$
$\displaystyle-4\left(\ \mathrm{Im}\left(\mathrm{Li_{3}}(1+i)\right)-\frac{\pi^3}{64}-\frac{ln(2)\mathrm{G}}{2}-\frac{ln^2(2)\pi}{8}+\frac{\pi ln^2(2)}{16}-\frac{\pi^3}{64}\right)+\frac{\pi^3}{48}$
$\displaystyle -4\ \mathrm{Im}(\mathrm{Li_3}(1+i))+\frac{7\pi^3}{48}+2ln(2)\mathrm{G}+\frac{\pi ln^2(2)}{4}$
$\displaystyle \pmb{I_{2,2}}=-8ln(2)\int_{\pi/4}^{\pi/2} ln(2sin(x))\ dx=-8ln(2)\int_{\pi/4}^{\pi/2}\left(-\sum_{n=1}^{+\infty}\frac{cos(2nx)}{n}\right)dx=$
$\displaystyle 8\ln(2)\left(\sum_{n=1}^{+\infty}\frac{\displaystyle\left((sin(n\pi)-sin\left(\frac{n\pi}{2}\right)\right)}{2n^2}\right)=-4ln(2)\mathrm{G}$
$\displaystyle \pmb{I_{2,3}}=4\int_{\pi/4}^{\pi/2}ln^2(2)\ dx= \pi\ ln^2(2)$
$\displaystyle\pmb{I_2}=-4\ \mathrm{Im}(\mathrm{Li_3}(1+i))+\frac{7\pi^3}{48}+2ln(2)\mathrm{G}+\frac{\pi ln^2(2)}{4}-4ln(2)\mathrm{G}+\pi\ ln^2(2)$
$\displaystyle\pmb{I_2=-4\ \mathrm{Im}(\mathrm{Li_3}(1+i))+\frac{7\pi^3}{48}-2ln(2)\mathrm{G}+\frac{5\pi ln^2(2)}{4}}$
Finally:
$\displaystyle S=I_1+I_2=\frac{5\pi^3}{48}+\frac{\pi}{4}ln^2(2)+2G\cdot ln(2)-4\ \mathrm{Im}(Li_3(1+i))-4\ \mathrm{Im}(\mathrm{Li_3}(1+i))+\frac{7\pi^3}{48}-2ln(2)\mathrm{G}+\frac{5\pi ln^2(2)}{4}$
$\pmb{\displaystyle S=\frac{\pi^3}{4}+\frac{3\pi\ln^2(2)}{2}-8\mathrm{Im(Li_3(}1+i\mathrm{))}}$