Consider the set
$S=\Big\{k\in\mathbb{N}:(\forall m,n\in \mathbb{N})\left(0\leq m\leq n\wedge m+n=k\Rightarrow \binom{n}{m}\in\mathbb{N}\right)\Big\}$
1) If $0\leq m\leq n$ and $m+n=0$, then $m=n=0\Rightarrow \binom{n}{m}=\binom{0}{0}=1\in \mathbb{N}\Rightarrow 0\in S$
2) If $0\leq m\leq n$ and $m+n=1$, then $m=0\wedge n=1\Rightarrow \binom{n}{m}=\binom{1}{0}=1\in\mathbb{N}\Rightarrow 1\in S$
Assume that $p\in S,\, \forall p\leq k$, then $0\leq m\leq n\wedge m+n=p\leq k\Rightarrow \binom{n}{m}\in\mathbb{N}$
If $m=0$, then $\binom{n}{m}=\binom{n}{0}=1\in \mathbb{N},\, \forall n\in\mathbb{N}$
If $m=n$, then $\binom{n}{m}=\binom{n}{n}=1\in \mathbb{N},\, \forall n\in\mathbb{N}$
Therefore we can only consider the cases in which $0<m<n$.
If $0<m<n$ and $m+n=k+1$, then $m+(n-1)=k$ which implies, by induction hypothesis, that $\binom{n-1}{m}\in \mathbb{N}$ since $0<m< n\Rightarrow 0<m\leq n-1$.
$(m-1)+(n-1)=k-1\leq k\Rightarrow \binom{n-1}{m-1}\in\mathbb{N}$ since $0<m<n\Rightarrow 0\leq m-1<n-1 $(also by induction hypothesis)
By Pascal's rule we have
$\binom{n}{m}=\binom{n-1}{m}+\binom{n-1}{m-1}$
We saw that $\binom{n-1}{m}$ and $\binom{n-1}{m-1}$ are natural number, therefore $\binom{n}{m}$ is also a natural number, by pascal's rule.
Therefore $k+1\in S$ which implies, by strong induction, that $S=\mathbb{N}$. Hence $\binom{n}{m}\in\mathbb{N},\, \forall 0\leq m\leq n$.