Let: $p$- prime, $k$-even, $c$-composite.
$$ \begin{eqnarray}\label{eq:25d} \nonumber
3k \choose 2k &=& \frac{(2k+1)(2k+2)(2k+3)(2k+4)(2k+5)(2k+6)\ldots (2k+k)}{ k!}\\ \nonumber
&=& \dfrac{1}{k!} \prod_{m=2k+1}^{3k} {m} \\ \label{eq: 25g}
&=& \dfrac{1}{k!} \prod_{2k < m \leq 3k}{m}\\ \nonumber
&=& \dfrac{1}{k!} \left[\prod_{2k < p \leq 3k} {p} \cdot \prod_{2k < c \leq 3k} {c} \right] \\
&=& \left[\dfrac{1}{k!} \prod_{2k < c \leq 3k} {c} \right] { \prod_{2k < p \leq 3k} {p}} \\
&=& A { \prod_{2k < p \leq 3k} {p}} .
\end{eqnarray}
$$
I want to prove that $A \in Z^+\ $ so that ${\displaystyle \prod_{2k < p \leq 3k} {p}} $ divides $3k \choose 2k $. I can't find any theorem about consecutive composite integer. I only know that $n!= \displaystyle \prod_{p \leq n}{p^{k(n,p)}}$ where $k(n,p) = \displaystyle \sum _{t=1} ^ r\left\lfloor \frac{n}{p^t}\right\rfloor$. It's for my thesis.