It follows from the Fundamental Theorem of Arithmetic and the power of a prime in a factorial:
If $p$ is a prime, the power of $p$ at the top is
$$\sum_{m=1}^\infty \lfloor \frac{n_1+n_2+..+n_k}{p^m} \rfloor$$
while the power of $p$ in the denominator is
$$\sum_{m=1}^\infty \lfloor \frac{n_1}{p^m} \rfloor+ \lfloor \frac{n_2}{p^m} \rfloor+...+\lfloor \frac{n_k}{p^m} \rfloor$$
Now, $\lfloor \frac{n_1}{p^m} \rfloor+ \lfloor \frac{n_2}{p^m} \rfloor+...+\lfloor \frac{n_k}{p^m} \rfloor$ is an integer and
$$\lfloor \frac{n_1}{p^m} \rfloor+ \lfloor \frac{n_2}{p^m} \rfloor+...+\lfloor \frac{n_k}{p^m} \rfloor \leq \frac{n_1+n_2+..+n_k}{p^m}$$
thus
$$\lfloor \frac{n_1}{p^m} \rfloor+ \lfloor \frac{n_2}{p^m} \rfloor+...+\lfloor \frac{n_k}{p^m} \rfloor \leq \lfloor \frac{n_1+n_2+..+n_k}{p^m} \rfloor$$
and hence
$$\sum_{m=1}^\infty \lfloor \frac{n_1}{p^m} \rfloor+ \lfloor \frac{n_2}{p^m} \rfloor+...+\lfloor \frac{n_k}{p^m} \rfloor \leq \sum_{m=1}^\infty \lfloor \frac{n_1+n_2+..+n_k}{p^m} \rfloor$$
Now, since all primes appear at a larger power in the numerator, the FTA guarantees that this number is an integer.