Questions tagged [inequality]

Questions on proving, manipulating and applying inequalities. Do not use this tag just because an inequality appears somewhere in your question.

An inequality is a mathematical relation between two quantities that are not necessarily equal, but bigger or smaller.

To prove inequalities, a number of proven inequalities can be used, including:

  • The AM-GM inequality

    Let $x_i>0$, $\alpha_i>0$ such that $\alpha_1+\alpha_2+...+\alpha_n=1$. Prove that $$\alpha_1x_1+\alpha_2x_2+...+\alpha_nx_n\geq x_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n}$$

For $\alpha_1=\alpha_2=...=\alpha_n=\frac{1}{n}$ we obtain the well-known $$\frac{x_1+x_2+\cdots+x_n}{n} \ge \sqrt[n]{x_1x_2\cdots x_n}$$

  • The Power Mean inequality (P-M).

    Let $a_1, a_2,\cdots, a_n$ be positive numbers and $p>q$. Then $$\left(\frac{a_1^p+a_2^p+\cdots+a_n^p}{n}\right)^{\frac{1}{p}} \geq \left(\frac{a_1^q+a_2^q+\cdots+a_n^q}{n}\right)^{\frac{1}{q}}$$

  • The Rearrangement inequality (R).

    Let $a_1\le\dots\le a_n$ and $b_1\le\dots\le b_n$. For all permutations $\sigma\in S_n$, $$\sum_{i=1}^na_ib_{n-i+1}\le\sum_{i=1}^na_ib_{\sigma(i)}\leq\sum_{i=1}^na_ib_i.$$

The rearrangement generalizes similar for more than two sequences of numbers.

  • The Cauchy-Schwarz inequality (C-S).

    If $a_1, a_2, \cdots, a_n$ and $b_1, b_2,\cdots, b_n$ are two sequences of real numbers, then $$\sum^{n}_{i=1} a_i^2 \sum^{n}_{i=1} b_i^2\geq\left(\sum^{n}_{i=1} a_ib_i \right)^2$$

  • The H$\ddot o$lder inequality (H).

    Let $a_1$, $a_2$,..., $a_n$, $b_1$, $b_2$,..., $b_n$, $\alpha$ and $\beta$ be positive numbers. Then $$\left(\sum_{i =1}^n a_i\right )^\alpha \left(\sum_{i =1}^n b_i \right )^\beta\geq \left(\sum_{i =1}^n (a_ib_i)^\frac{1}{\alpha+\beta}\right )^{\alpha+\beta} $$

  • The Schur inequalities (S):

    Let $x$, $y$ and $z$ be positive numbers and $t$ is a real number. Prove that:$$x^t(x-y)(x-z)+y^t(y-z)(y-x)+z^t (z-x)(z-y)\ge 0$$

  • Muirhead inequalities

    A sequence $a_1 \geq a_2 \geq \dots \geq a_n$ majorizes a sequence $b_1 \geq b_2 \geq \dots \geq b_n$ if $$\sum_{i=1}^k a_i \geq\sum_{i=1}^k a_i $$ for all $1\leq k < n$ and $$\sum_{i=1}^n a_i =\sum_{i=1}^n a_i $$ If sequence $(a_i)$ majorizes $(b_i)$ (notated as $a_i \succ b_i$), then $$\sum_{\text{sym}}x_1^{a_1}x_2^{a_2}\dots x_n^{a_n}\geq \sum_{\text{sym}}x_1^{b_1}x_2^{b_2}\dots x_n^{b_n}$$

30160 questions
73
votes
8 answers

How can one prove that $e<\pi$?

This question is inspired by another one, asking to prove that something approximately equal to $1.2$ is bigger than something approximately equal to $0.9$. The numerical answer to this question was (expectedly) downvoted, though in my opinion it is…
Start wearing purple
  • 53,234
  • 13
  • 164
  • 223
60
votes
2 answers

How prove this inequality $\sin{\sin{\sin{\sin{x}}}}\le\frac{4}{5}\cos{\cos{\cos{\cos{x}}}}$

Nice Question: let $x\in [0,2\pi]$, show that: $$\sin{\sin{\sin{\sin{x}}}}\le\dfrac{4}{5}\cos{\cos{\cos{\cos{x}}}}?$$ I know this follow famous problem(1995 Russia Mathematical…
math110
  • 93,304
43
votes
8 answers

Inequality: $(a^3+a+1)(b^3+b+1)(c^3+c+1) \leq 27$

Let be $a,b,c \geq 0$ such that: $a^2+b^2+c^2=3$. Prove that: $$(a^3+a+1)(b^3+b+1)(c^3+c+1) \leq 27.$$ I try to apply $GM \leq AM$ for $x=a^3+a+1$, $y=b^3+b+1,z=c^3+c+1$ and $$\displaystyle \sqrt[3]{xyz} \leq \frac{x+y+z}{3}$$ but still…
Iuli
  • 6,790
40
votes
8 answers

$x,y,z \geqslant 0$, $x+y^2+z^3=1$, prove $x^2y+y^2z+z^2x < \frac12$

$x,y,z \geqslant 0$, $x+y^2+z^3=1$, prove $$x^2y+y^2z+z^2x < \frac12$$ This inequality has been verified by Mathematica. $\frac12$ is not the best bound. I try to do AM-GM for this one but not yet success. The condition $x+y^2+z^3$ is very…
HN_NH
  • 4,361
31
votes
4 answers

Prove that $a^{ab}+b^{bc}+c^{cd}+d^{da} \geq \pi$

If $a,b,c,d >0$, and $a+b+c+d=4$, prove that $$a^{ab}+b^{bc}+c^{cd}+d^{da} \geq \pi.$$ I don't think Jensen's inequality will help here, but I think first determining where equality holds will be useful. Maybe taking the logarithm or…
Puzzled417
  • 6,956
30
votes
1 answer
30
votes
2 answers

Prove $\left(\frac{a+1}{a+b}\right)^a+\left(\frac{b+1}{b+c}\right)^b+\left(\frac{c+1}{c+a}\right)^c \geqslant 3$

$a,b,c \geqslant 0,$$ a+b+c=3$, and $(a+b)(b+c)(c+a) \neq 0$ , prove $$\left(\frac{a+1}{a+b}\right)^a+\left(\frac{b+1}{b+c}\right)^b+\left(\frac{c+1}{c+a}\right)^c \geqslant 3$$ I try Bernouli's inequality but checking the case of $a>1$ and…
HN_NH
  • 4,361
26
votes
2 answers

How to prove this inequality(7)?

Let $x,y,z\in\mathbb{R}$, prove that $$4(x^6+y^6+z^6)+5(x^5y+y^5z+z^5x)\ge\dfrac{(x+y+z)^6}{27}$$ I do this sometimes, and I think this problem is very hard, I hope someone can solve. Thank you. By this way: In china BBs: Have solve this follow…
math110
  • 93,304
25
votes
6 answers

show this inequality $\sqrt{\frac{a^b}{b}}+\sqrt{\frac{b^a}{a}}\ge 2$

let $a,b>0.$ Show that $$\sqrt{\dfrac{a^b}{b}}+\sqrt{\dfrac{b^a}{a}}\ge 2\tag{1}$$ I known How to prove $a^b+b^a>1$,where $a,b>0.$ See $x^y+y^x>1$ for all $(x, y)\in \mathbb{R_+^2}$ to prove $(1)$, I want use AM-GM…
math110
  • 93,304
24
votes
1 answer

Prove that if $x_1,x_2,\ldots,x_n>0$, then $(1+x_1)(1+x_1+x_2)\ldots(1+x_1+x_2+\ldots+x_n) \ge \sqrt{(n+1)^{n+1}}\sqrt{x_1x_2\ldots x_n}$.

Prove that if $x_1,x_2,\ldots,x_n>0$, then $$(1+x_1)(1+x_1+x_2)\ldots(1+x_1+x_2+\ldots+x_n) \ge \sqrt{(n+1)^{n+1}}\sqrt{x_1x_2\ldots x_n}.$$ I've tried using the AM-GM inequality: $$(1+x_1)(1+x_1+x_2)\ldots(1+x_1+x_2+\ldots+x_n) \ge…
user26486
  • 11,331
24
votes
2 answers

Prove that $|a+b|^p \leq 2^p \{ |a|^p +|b|^p \}$

For any real numbers $a$ and $b$ and $1 \leq p < \infty$, prove that $$|a+b|^p \leq 2^p \{ |a|^p +|b|^p \}$$ This inequality is given in the the book Real Analysis by Royden, Chapter $7$, page $136$. I don't understand how the author comes to this…
Idonknow
  • 15,643
23
votes
2 answers

How to prove this inequality $(a^2+bc^4)(b^2+ca^4)(c^2+ab^4) \leq 64$?

Question: If $a,b,c$ are nonnegative real numbers such that $a+b+c=3,$ then $$(a^2+bc^4)(b^2+ca^4)(c^2+ab^4) \leq 64$$ My try: I found the equality holds only if $(a,b,c)=(2,0,1)$ or all of its permutations. But I can't prove this inequality it.…
math110
  • 93,304
23
votes
2 answers

Trigonometric Inequality. $\sin{1}+\sin{2}+\ldots+\sin{n} <2$ .

How can I prove the following trigonometric inequality : $$\sin1+\sin2 +\ldots+\sin n <2$$ with $n \in \mathbb{N}^{*}$. The problem is that I don't know how to start this problem, I try to use some formul but nothing. I'll appreciate your…
Iuli
  • 6,790
22
votes
7 answers

How prove this $f(n)\le f(n+1)$ where $f(n)=\sum_{k=1}^{n}\frac{n}{n^2+k^2}$

let $$f(n)=\sum_{k=1}^{n}\dfrac{n}{n^2+k^2}$$ prove or disprove $$f(n)\le f(n+1)$$ this inequality is found when I deal this follow limit:…
math110
  • 93,304
22
votes
2 answers

Prove that $\frac{x^x}{x+y}+\frac{y^y}{y+z}+\frac{z^z}{z+x} \geqslant \frac32$

$x,y,z >0$, prove $$\frac{x^x}{x+y}+\frac{y^y}{y+z}+\frac{z^z}{z+x} \geqslant \frac32$$ I have a solution for this beautiful and elegant inequality. I am posting this inequality to share and see other solutions from everyone on MSE. Since some…
HN_NH
  • 4,361
1
2 3
99 100