let $a_{i}>0,b_{i}>0,c_{i}>0,d_{i}>0,i=1,2,\cdots,n $
show that $$\sum_{i=1}^{n}(a_{i}+b_{i}+c_{i}+d_{i})\sum_{i=1}^{n}\dfrac{a_{i}b_{i}+b_{i}c_{i}+c_{i}d_{i}+d_{i}a_{i}+a_{i}c_{i}+b_{i}d_{i}}{a_{i}+b_{i}+c_{i}+d_{i}}\sum_{i=1}^{n}\dfrac{a_{i}b_{i}c_{i}+b_{i}c_{i}d_{i}+c_{i}d_{i}a_{i}+d_{i}a_{i}b_{i}}{b_{i}c_{i}+c_{i}a_{i}+a_{i}b_{i}+d_{i}a_{i}+d_{i}b_{i}+d_{i}c_{i}}\sum_{i=1}^{n}\dfrac{a_{i}b_{i}c_{i}d_{i}}{a_{i}b_{i}c_{i}+b_{i}c_{i}d_{i}+c_{i}d_{i}a_{i}+d_{i}a_{i}b_{i}}\le\sum_{i=1}^{n}a_{i}\sum_{i=1}^{n}b_{i}\sum_{i=1}^{n}c_{i}\sum_{i=1}^{n}d_{i}$$
I think this true, because yesterday I have proved this
$\sum a+b+c \sum \frac{ab+bc+ca}{a+b+c} \sum \frac{abc}{ab+bc+ca} \leq \sum a \sum b \sum c$
Thank you everyone.