From
Sum of tangent functions where arguments are in specific arithmetic series,
$$\tan180x=\frac{\binom{180}1t-\binom{180}3t^3+\cdots+\binom{180}{177}t^{177}-\binom{180}{179}t^{179}}{1-\binom{180}2t^2+\cdots-\binom{180}{178}t^{178}+\binom{180}{180}t^{180}}$$ where $t=\tan x$
If we set $\tan180x=0,180x=180^\circ r$ where $r$ is any integer
$\implies x=r^\circ$ where $0\le r<180$
So, the roots of $\binom{180}1t-\binom{180}3t^3+\cdots+\binom{180}{177}t^{177}-\binom{180}{179}t^{179}=0$
$\iff\binom{180}{179}t^{179}-\binom{180}{177}t^{177}+\cdots+\binom{180}3t^3-\binom{180}1t=0$ are $\tan r^\circ$ where $0\le r<180,r\ne90$ ($r=90$ corresponds to the denominator $=\infty$)
So, the roots of $\binom{180}{179}t^{178}-\binom{180}{177}t^{176}+\cdots+\binom{180}3t^2-\binom{180}1=0$ are $\tan r^\circ$ where $0<r<180,r\ne90$
So, the roots of $\binom{180}{179}u^{89}-\binom{180}{177}u^{88}+\cdots+\binom{180}3u-\binom{180}1=0$ are $\tan^2r^\circ$ where $0<r<90$
Using Vieta's formula, $\sum_{r=1}^{89}\tan^2r^\circ=\dfrac{\binom{180}{177}}{\binom{180}{179}}$