Computing Tangents
Using that $1+\color{#090}{\cos\left(\frac{2\pi}5\right)}+\color{#C00}{\cos\left(\frac{4\pi}5\right)}+\color{#C00}{\cos\left(\frac{6\pi}5\right)}+\color{#090}{\cos\left(\frac{8\pi}5\right)}=0$,
$$
\begin{align}
0
&=\color{#090}{\cos\left(\frac{2\pi}5\right)}\color{#C00}{+\cos\left(\frac{4\pi}5\right)}+\frac12\\
&=\color{#090}{2\cos^2\left(\frac{\pi}5\right)-1}\color{#C00}{-\cos\left(\frac{\pi}5\right)}+\frac12\\[3pt]
&=4\cos^2\left(\frac{\pi}5\right)-2\cos\left(\frac{\pi}5\right)-1
\end{align}
$$
Thus,
$$
\cos\left(\frac{\pi}5\right)=\frac{1+\sqrt5}{4}\quad\text{and}\quad\cos\left(\frac{2\pi}5\right)=\frac{-1+\sqrt5}{4}
$$
and therefore,
$$
\sec\left(\frac{\pi}5\right)=\sqrt5-1\quad\text{and}\quad\sec\left(\frac{2\pi}5\right)=\sqrt5+1
$$
so that
$$
\tan^2\left(\frac{\pi}5\right)=5-2\sqrt5\quad\text{and}\quad\tan^2\left(\frac{2\pi}5\right)=5+2\sqrt5
$$
So finally,
$$
\bbox[5px,border:2px solid #C0A000]{\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)=10}
$$
Using Residues (not for algebra-precalculus)
$\frac{5/z}{z^5-1}$ has residue $1$ at each of the fifth roots of unity and residue $-5$ at the origin.
The integral of
$$
-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}
$$
around a circle of very large radius vanishes since its absolute value $\sim\!\frac1{|z|^6}$. Thus, the sum of its residues must be $0$. If $|z|=1$, $-\left(\frac{z^2-1}{z^2+1}\right)^2=\tan^2(\arg(z))$. Thus, the sum of the residues at the fifth roots of unity is twice the quantity we want. This is the negative of the sum of the residues at $0$, $i$, and $-i$.
$\newcommand{\Res}{\operatorname*{Res}}$
$$
\begin{align}
\Res_{z=i}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=-\frac{25}2\\
\Res_{z=-i}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=-\frac{25}2\\
\Res_{z=0}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=5\\
\end{align}
$$
Thus, the sum of the residues is $-\frac{25}2-\frac{25}2+5=-20$. Therefore,
$$
2\left(\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)\right)=\sum_{k=0}^4\tan^2\left(\frac{2k\pi}5\right)=20
$$
And so
$$
\bbox[5px,border:2px solid #C0A000]{\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)=10}
$$
As $\tan\dfrac{4\pi}5=\tan\left(\pi-\dfrac\pi5\right)=-\tan\dfrac\pi5$ etc.,
the equation whose roots are $$\tan^2\dfrac{4\pi}5=\tan^2\dfrac{\pi}5, \tan^2\dfrac{3\pi}5=\tan^2\dfrac{2\pi}5$$ will be $$y^2-10y+5=0$$ See also; https://math.stackexchange.com/questions/951522/trig-sum-tan-21-circ-tan-22-circ-tan2-89-circ
– lab bhattacharjee Jun 26 '17 at 03:13