8

The question is to find the exact value of:

$$\tan^2{\left(\frac{\pi}{5}\right)}+\tan^2{\left(\frac{2\pi}{5}\right)}$$

without using a calculator.

I know that it is possible to find the exact values of $\tan{\left(\frac{\pi}{5}\right)}$ and $\tan{\left(\frac{2\pi}{5}\right)}$ to find that the answer is $10$. However, I want to know whether there is a faster way that does not involve calculating those values.

So far, I have this: let $a=\tan{\left(\frac{\pi}{5}\right)}$ and $b=\tan{\left(\frac{2\pi}{5}\right)}$; then, $b=\frac{2a}{1-a^2}$ and $a=-\frac{2b}{1-b^2}$, so multiplying the two and simplifying gives:

$$a^2+b^2={\left(ab\right)}^2+5$$

Any ideas? Thanks!

Ant
  • 2,407

6 Answers6

6

Let $a=\tan(\frac{\pi}{5})$ and $b= \tan(\frac{2 \pi}{5})$. Also let $s=a^2+b^2$ and $p=(a b)^2$. We have \begin{eqnarray*} a^2+b^2 &=&(ab)^2+5 \\ s&=&p+5. \end{eqnarray*} Now $a(1-b^2)=-2b$ and $b(1-a^2)=2a$ square these equations and add them together \begin{eqnarray*} 3(a^2+b^2)+4(ab)^2&=&(ab)^2(a^2+b^2) \\ 3s+4p&=&sp. \end{eqnarray*} Now eliminate $p$ and we have the quadratic $s^2-12s-20=0$. This has roots $2$ and $\color{red}{10}$.

Travis Willse
  • 99,363
Donald Splutterwit
  • 36,613
  • 2
  • 26
  • 73
5

Given this article here, your problem would come out to $2\cdot4+2=10$. You should check the article out because it gives some links to other pages and possibly proofs.

My question here has a proof of the identity.

D.R.
  • 8,691
  • 4
  • 22
  • 52
5

Inspired/ Trying to make sense of Jaideep's Answer ... \begin{eqnarray*} \tan(5 \theta) =\frac{5 \tan(\theta)-10 \tan^3(\theta)+\tan^5(\theta)}{1-10\tan^2(\theta) +5\tan^4(\theta)} \end{eqnarray*} Let $\theta=\frac{\pi}{5}$ and $x=tan(\frac{\pi}{5})$. We have the quintic \begin{eqnarray*} 5x-10x^3+x^5=0 \end{eqnarray*} This has roots $tan(\frac{\pi}{5}),tan(\frac{2\pi}{5}),tan(\frac{3\pi}{5}),tan(\frac{4\pi}{5}),tan(\frac{5\pi}{5})$.

Note that $tan(\frac{3\pi}{5})=-tan(\frac{2\pi}{5})$ , $tan(\frac{4\pi}{5})=-tan(\frac{\pi}{5}) $ and $tan(\frac{5\pi}{5})=0$.

Now square this quintic & substitute $y=x^2$ and we have \begin{eqnarray*} 25y-100y^2+110y^3-\color{red}{20}y^4+y^5=0 \end{eqnarray*} The sum of the roots of this polynomial gives $2 (tan^2(\frac{\pi}{5})+tan^2(\frac{2\pi}{5}))=20$.

Donald Splutterwit
  • 36,613
  • 2
  • 26
  • 73
  • Nice touch making the sum of the squares of the tangent values obvious. – sharding4 Jun 26 '17 at 00:06
  • 3
    @Donalid, Things can be much simpler : So, the equation whose roots are $$\tan\dfrac{r\pi}5,r=1,2,3,4$$ will be $$x^4-10x^2+5=0$$

    As $\tan\dfrac{4\pi}5=\tan\left(\pi-\dfrac\pi5\right)=-\tan\dfrac\pi5$ etc.,

    the equation whose roots are $$\tan^2\dfrac{4\pi}5=\tan^2\dfrac{\pi}5, \tan^2\dfrac{3\pi}5=\tan^2\dfrac{2\pi}5$$ will be $$y^2-10y+5=0$$ See also; https://math.stackexchange.com/questions/951522/trig-sum-tan-21-circ-tan-22-circ-tan2-89-circ

    – lab bhattacharjee Jun 26 '17 at 03:13
  • @labbhattacharjee Right, now I see it ... extract the zero root & pair the others, to get the quadratic $y^2-10y+5=0$. Yes that would have been an even better answer. Thanks for that ... $\ddot \smile$ – Donald Splutterwit Jun 26 '17 at 10:13
4

Let $\tan\left(\frac{\pi}{5}\right)=x$

$$\tan\left(\frac{\pi}{5}+\frac{\pi}{5}+\frac{\pi}{5}+\frac{\pi}{5}+\frac{\pi}{5}\right)=0$$

$$\implies S_1-S_3+S_5=0$$

($S_k$ represents sum of tangents taken $k$ at a time)

$$\implies 5x-10x^3+x^5=0$$

Now the roots of this equation are $\tan\left(\frac{\pi}{5}\right),\tan\left(\frac{2\pi}{5}\right),\tan\left(\frac{3\pi}{5}\right),\tan\left(\frac{4\pi}{5}\right),\tan\left(\frac{\pi}{5}\right)$. Now sum of squares of the roots is $$\tan^2\left(\frac{\pi}{5}\right)+\tan^2\left(\frac{2\pi}{5}\right)+\tan^2\left(\frac{3\pi}{5}\right)+\tan^2\left(\frac{4\pi}{5}\right)+\tan^2\left(\frac{\pi}{5}\right)=2\left(\tan^2\left(\frac{\pi}{5}\right)+\tan^2\left(\frac{2\pi}{5}\right)\right)$$ Now this when calculated from basic concept of theory of equations applying to given polynomial comes to be $20$.

Hence $$2\left(\tan^2\left(\frac{\pi}{5}\right)+\tan^2\left(\frac{2\pi}{5}\right)\right)=20 \implies \tan^2\left(\frac{\pi}{5}\right)+\tan^2\left(\frac{2\pi}{5}\right)=10$$

Jaideep Khare
  • 19,293
  • 1
    what is $S_1.S_3....$? You should explain your notation. – Anurag A Jun 25 '17 at 23:16
  • @AnuragA Done. ${}{}{}{}$ – Jaideep Khare Jun 25 '17 at 23:21
  • I am not sure what do you mean by sum of tangents taken $k$ at a time??? What you are using is De-Moivre's idea (to express $\tan 5x$ in terms of powers of $\tan x$, but you haven't clearly stated that. There are lot of gaps and missing ideas in your solution. – Anurag A Jun 25 '17 at 23:24
  • The quintic doesn't seem quite right. Multiplying out $(x-\tan(\pi/5)\prod_{k=1}^4 (x-\tan(k\pi/5))$ has even degree terms. Though it may not matter in the end. – sharding4 Jun 25 '17 at 23:27
  • @AnuragA sum of tangents taken $k$ at a time means pick up $k$ tangents (in this case they all are equal) and sum up them.Example : for $\alpha,\beta,\gamma,\delta$ $$S_1=\alpha+\beta+\gamma+\delta$$ $$S_2=\alpha\beta+\beta\gamma+...$$ $$S_3=\alpha\beta\gamma+\beta\gamma\delta+....$$ and $$S_4=\alpha\beta\gamma\delta$$ – Jaideep Khare Jun 25 '17 at 23:31
  • You've repeated $\tan(\pi/5)$ as a root and what you want is $\tan(\pi)=\tan(5\pi/5)$ for one of them. Then your quintic is correct. – sharding4 Jun 25 '17 at 23:41
  • Very nice argument. It would be helpful if you added a brief explanation on your second and third steps. Similarly when you invoke the identity for symmetric polynomials to evaluate the sum of the squares of the roots -- a little more detail even just $-2\cdot -10$ instead of $20$. (And fix up that extra $\tan (\pi/5)$.) – sharding4 Jun 26 '17 at 00:01
4

Computing Tangents

Using that $1+\color{#090}{\cos\left(\frac{2\pi}5\right)}+\color{#C00}{\cos\left(\frac{4\pi}5\right)}+\color{#C00}{\cos\left(\frac{6\pi}5\right)}+\color{#090}{\cos\left(\frac{8\pi}5\right)}=0$, $$ \begin{align} 0 &=\color{#090}{\cos\left(\frac{2\pi}5\right)}\color{#C00}{+\cos\left(\frac{4\pi}5\right)}+\frac12\\ &=\color{#090}{2\cos^2\left(\frac{\pi}5\right)-1}\color{#C00}{-\cos\left(\frac{\pi}5\right)}+\frac12\\[3pt] &=4\cos^2\left(\frac{\pi}5\right)-2\cos\left(\frac{\pi}5\right)-1 \end{align} $$ Thus, $$ \cos\left(\frac{\pi}5\right)=\frac{1+\sqrt5}{4}\quad\text{and}\quad\cos\left(\frac{2\pi}5\right)=\frac{-1+\sqrt5}{4} $$ and therefore, $$ \sec\left(\frac{\pi}5\right)=\sqrt5-1\quad\text{and}\quad\sec\left(\frac{2\pi}5\right)=\sqrt5+1 $$ so that $$ \tan^2\left(\frac{\pi}5\right)=5-2\sqrt5\quad\text{and}\quad\tan^2\left(\frac{2\pi}5\right)=5+2\sqrt5 $$ So finally, $$ \bbox[5px,border:2px solid #C0A000]{\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)=10} $$


Using Residues (not for algebra-precalculus)

$\frac{5/z}{z^5-1}$ has residue $1$ at each of the fifth roots of unity and residue $-5$ at the origin.

The integral of $$ -\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1} $$ around a circle of very large radius vanishes since its absolute value $\sim\!\frac1{|z|^6}$. Thus, the sum of its residues must be $0$. If $|z|=1$, $-\left(\frac{z^2-1}{z^2+1}\right)^2=\tan^2(\arg(z))$. Thus, the sum of the residues at the fifth roots of unity is twice the quantity we want. This is the negative of the sum of the residues at $0$, $i$, and $-i$.

$\newcommand{\Res}{\operatorname*{Res}}$ $$ \begin{align} \Res_{z=i}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=-\frac{25}2\\ \Res_{z=-i}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=-\frac{25}2\\ \Res_{z=0}\left(-\left(\frac{z^2-1}{z^2+1}\right)^2\frac{5/z}{z^5-1}\right)&=5\\ \end{align} $$ Thus, the sum of the residues is $-\frac{25}2-\frac{25}2+5=-20$. Therefore, $$ 2\left(\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)\right)=\sum_{k=0}^4\tan^2\left(\frac{2k\pi}5\right)=20 $$ And so $$ \bbox[5px,border:2px solid #C0A000]{\tan^2\left(\frac{\pi}5\right)+\tan^2\left(\frac{2\pi}5\right)=10} $$

robjohn
  • 345,667
4

$$\tan^2\frac{\pi}{5}+\tan^2\frac{2\pi}{5}=\frac{1-\cos\frac{2\pi}{5}}{1+\cos\frac{2\pi}{5}}+\frac{1-\cos\frac{4\pi}{5}}{1+\cos\frac{4\pi}{5}}=$$ $$=\frac{2-2\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}{1+\cos\frac{2\pi}{5}+\cos\frac{4\pi}{5}+\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}=$$ $$=\frac{2-\frac{4\sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}{2\sin\frac{2\pi}{5}}}{1+\frac{2\sin\frac{\pi}{5}\cos\frac{2\pi}{5}+2\sin\frac{\pi}{5}\cos\frac{4\pi}{5}}{2\sin\frac{\pi}{5}}+\frac{4\sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}{4\sin\frac{2\pi}{5}}}=$$ $$=\frac{2-\frac{\sin\frac{8\pi}{5}}{2\sin\frac{2\pi}{5}}}{1+\frac{\sin\frac{3\pi}{5}-\sin\frac{\pi}{5}+\sin\frac{5\pi}{5}-\sin\frac{3\pi}{5}}{2\sin\frac{\pi}{5}}+\frac{\sin\frac{8\pi}{5}}{4\sin\frac{2\pi}{5}}}=\frac{2+\frac{1}{2}}{1-\frac{1}{2}-\frac{1}{4}}=10.$$