How to evaluate $\tan^2(1) + \tan^2(3) + \tan^2(5) + \tan^2(7) + \ldots + \tan^2(89)$?
Angles are given in degrees.
I tried converting $\tan(89)$ as $\cot(1)$ and then tried combining $\tan(1)$ and $\cot(1)$, but later got stuck.

- 24,905

- 109
-
I don't think there's any nice way of evaluating it exactly. What is the context of the question? – Sten Feb 10 '15 at 09:43
-
Someone hinted that complex numbers can be used to answer the question. – Abhishek Bansal Feb 10 '15 at 09:49
-
yes. they are in degrees. I used wolfram alpha to figure out the answer and it comes out to be 4005. But how do we prove it without using the calculator. – Abhishek Bansal Feb 10 '15 at 09:50
-
2Perhaps check out the related question Trig sum: $\tan ^21^\circ+\tan^22^\circ+\ldots+\tan^2 89^\circ = ?$ – Ben Feb 10 '15 at 11:15
2 Answers
My answer is based on a rather beautiful answer given to a related question, that can be found here.
Expressing the summation in radians, we wish to evaluate $$S=\sum_{m=0}^{45-1}\tan^2\left\{\frac{(2m+1)\pi}{2\cdot90}\right\}=\sum_{m=0}^{45-1}\tan^2\left\{\frac{(m+\frac{1}{2})\pi}{2\cdot45}\right\}$$ Using the well-known identity that $$\left(\cos{\frac{k\pi}{2n}} + i\sin{\frac{k\pi}{2n}}\right)^{2n}=(-1)^{k}$$ and by setting $k=(m+\frac{1}{2})$ we have a purely imaginary expression $$\left(\cos{\frac{(m+\frac{1}{2})\pi}{2n}} + i\sin{\frac{(m+\frac{1}{2})\pi}{2n}}\right)^{2n}=(-1)^{m}i$$ Calculating the binomial expansion, where $n=45$, we have $$\sum_{t=0}^{2n}{2n \choose t}\left[\cos\frac{(m+\frac{1}{2})\pi}{2n}\right]^t\left[i\sin\frac{(m+\frac{1}{2})\pi}{2n}\right]^{2n-t}$$ Considering only the real terms, which should be $0$, we have $$\sum_{r=0}^{n}{2n \choose 2r}\left[\cos\frac{(m+\frac{1}{2})\pi}{2n}\right]^{2r}(-1)^{n-r}\left[\sin\frac{(m+\frac{1}{2})\pi}{2n}\right]^{2n-2r}=0$$ dividing by $\left[\cos\frac{(m+\frac{1}{2})\pi}{2n}\right]^{2n}$ results in $$\sum_{r=0}^{n}{2n \choose 2r}(-1)^{n-r}\left[\tan\frac{(m+\frac{1}{2})\pi}{2n}\right]^{2n-2r}=0$$ In a manner similar to the linked answer, we use Vieta's formula, as the summation we wish to evaluate is simply the sum of the roots of the polynomial. Thus, the sum is ($n=45$) $$S=\frac{{2n \choose 2}}{{2n \choose 0}}=\frac{(2n)(2n-1)}{2}=\frac{90\cdot89}{2}=4005$$

- 11,609
For integer $n,\tan(2n+1)90^\circ=\tan90^\circ=\infty$
If $\tan90x=\infty,90x=180^\circ m+90^\circ=90^\circ(2m+1)$ where $m$ is any integer
$\implies x=(2m+1)^\circ$ where $0\le m\le89$
Like Trig sum: $\tan ^21^\circ+\tan ^22^\circ+...+\tan^2 89^\circ = ?$,
$$\tan90x=\frac{\binom{90}1t-\binom{90}3t^3+\cdots+\binom{90}{89}t^{89}}{\binom{90}0-\binom{90}2t^2+\cdots-\binom{90}{90}t^{90}}$$ where $t=\tan x$
For $\tan90x=\infty,$ $$\binom{90}0-\binom{90}2t^2+\cdots+\binom{90}{88}t^{88}-\binom{90}{90}t^{90}=0 \iff t^{90}-\binom{90}{88}t^{88}+\cdots-1=0$$
Now as $\tan(180^\circ-y)=-\tan y\implies\tan^2(180^\circ-y)=\tan^2y,$
So, the roots of $$u^{45}-\binom{90}{88}u^{44}+\cdots-1=0$$ are $\tan(2r+1)^\circ,0\le r\le 44$ or $45\le r\le89$
$$\implies\sum_{r=0}^{44}\tan^2(2r+1)^\circ=\frac{\binom{90}{88}}1=\binom{90}2=\cdots$$

- 274,582