Prove that $\left\{\cot^2\left(\dfrac{k\pi}{2n+1}\right)\right\}_{k=1}^{n}$ are the roots of the equation
$$x^n-\dfrac{\dbinom{2n+1}{3}}{\dbinom{2n+1}{1}}x^{n-1} + \dfrac{\dbinom{2n+1}{5}}{\dbinom{2n+1}{1}}x^{n-2} - \ldots \ldots \ldots + \dfrac{(-1)^{n}}{\dbinom{2n+1}{1}} =0 $$
Hence prove that
$$\sum_{r=1}^{\infty} \dfrac{1}{r^2}=\dfrac{\pi^{2}}{6}$$
I was stumped on the first sight. Then I tried using complex numbers but it was in vein. I further tried simplifying the equation, but since it contains only half of the binomial coefficients, I wasn't able to get a simpler equation.
Any help will be appreciated.
Thanks.