Like Roots of a polynomial whose coefficients are ratios of binomial coefficients,
$$\tan(2n+1)x=\dfrac{\binom{2n+1}1\tan x-\binom{2n+1}3\tan^3x+\cdots}{1-\binom{2n+1}2\tan^2x+\cdots}$$
If $\tan(2n+1)x=0,(2n+1)x=r\pi$ where $r$ is ay integer
$\implies x=\dfrac{r\pi}{2n+1}$ where $r\equiv-n,-(n-1),\cdots,0,1,\cdots,n\pmod{2n+1}$
So, the roots of $\displaystyle\binom{2n+1}1\tan x-\binom{2n+1}3\tan^3x+\cdots+(-1)^{n-1}\binom{2n+1}{2n-1}\tan^{2n-1}x+(-1)^n\tan^{2n+1}x=0$
$\displaystyle\iff\tan^{2n+1}x-\binom{2n+1}2\tan^{2n-1}x+\cdots+(-1)^n(2n+1)\tan x=0$
are $\tan x$ where $x=\dfrac{r\pi}{2n+1}$ where $r\equiv-n,-(n-1),\cdots,0,1,\cdots,n\pmod{2n+1}$
So, the roots of $\displaystyle\tan^{2n}x-\binom{2n+1}2\tan^{2n-2}x+\cdots+(-1)^n(2n+1)=0$
are $\tan x$ where $x=\dfrac{r\pi}{2n+1}$ where $r\equiv\pm1,\pm2,\cdots,\pm n\pmod{2n+1}$
As $\tan(-A)=-\tan A,$
the roots of $\displaystyle t^nx-\binom{2n+1}2t^{n-1}x+\cdots+(-1)^n(2n+1)=0\ \ \ \ (1)$
are $\tan^2x$ where $x=\dfrac{r\pi}{2n+1}$ where $r\equiv1,2,\cdots,n\pmod{2n+1}$
Using Vieta's formula on $(1),$ $$\sum_{r=1}^n\tan^2\dfrac{r\pi}{2n+1}=\dfrac{\binom{2n+1}2}1=\cdots$$
and $$(-1)^n\prod_{r=1}^n\tan^2\dfrac{r\pi}{2n+1}=(-1)^n(2n+1)\iff\prod_{r=1}^n\tan^2\dfrac{r\pi}{2n+1}=(2n+1)$$
Now, $\tan\dfrac{r\pi}{2n+1}>0$ for $\dfrac\pi2>\dfrac{r\pi}{2n+1}>0\iff2n+1>2r>0$
$$\implies\prod_{r=1}^n\tan\dfrac{r\pi}{2n+1}=\sqrt{2n+1}$$