Since the user @user355088 demonstrated a beautiful solution, let me provide an ugly solution. Write $\omega = e^{2\pi i/180} $ for simplicity. Then
\begin{align*}
\sum_{n=1}^{89} \tan^2 (n\alpha/2)
= \frac{1}{2} \sum_{n=-89}^{89} \tan^2 (n\alpha/2)
= - \frac{1}{2} \sum_{n=-89}^{89} \frac{(1-\omega^n)^2}{(1+\omega^n)^2}
= - \frac{1}{2} \lim_{\epsilon \to 0^+} S(\epsilon),
\end{align*}
where $S(\epsilon)$ is defined by
$$ S(\epsilon) := \sum_{n=-89}^{89} \frac{(1-e^{-2\epsilon}\omega^n)^2}{(1+e^{-2\epsilon}\omega^n)^2}. $$
Now we use the identity $\frac{(1-z)^2}{(1+z)^2} = 1+4\sum_{k=1}^{\infty} (-1)^k k z^{k} $ to expand
\begin{align*}
S(\epsilon)
&= 179 + 4 \sum_{k=1}^{\infty} (-1)^k k e^{-2k\epsilon} \Biggl( \sum_{n=-89}^{89} \omega^{kn} \Biggr) \\
&= 179 + 4 \sum_{k=1}^{\infty} (-1)^k k e^{-2k\epsilon} \Biggl( (-1)^{k-1} + \sum_{n=-89}^{90} \omega^{kn} \Biggr)
\end{align*}
By the sifting property of the sum of the roots of unity, we know:
$$ \sum_{n=-89}^{90} \omega^{kn}
= \begin{cases}
180, & \text{180 divides $k$}; \\
0, & \text{otherwise};
\end{cases} $$
So, by using $\frac{1}{\sinh^2 x} = \frac{4e^{-2x}}{(1-e^{-2x})^2} = 4 \sum_{k=1}^{\infty} k e^{-2kx}$ for $x > 0$,
\begin{align*}
S(\epsilon)
&= 179 + 4 \sum_{k=1}^{\infty} (-1)^k k e^{-2k\epsilon} \left( (-1)^{k-1} + 180 \cdot \mathbf{1}_{\{\text{180 divides $k$}\}} \right) \\
&= 179 + 4 \left( \sum_{k=1}^{\infty} 180^2 k e^{-360k\epsilon} - \sum_{k=1}^{\infty} k e^{-2k\epsilon} \right) \\
&= 179 + \left( \frac{180^2}{\sinh^2(180\epsilon)} - \frac{1}{\sinh^2(\epsilon)} \right).
\end{align*}
Since $\frac{1}{\sinh^2 x} = \frac{1}{x^2} - \frac{1}{3} + \mathcal{O}(x^2)$, we obtain
\begin{align*}
S(\epsilon)
&= 179 - \frac{180^2 - 1}{3} + \mathcal{O}(\epsilon^2),
\end{align*}
and taking $\epsilon \to 0^+$ proves that
$$ \sum_{n=1}^{89} \tan^2 (n\alpha/2) = -\frac{1}{2}\left( 179 - \frac{180^2 - 1}{3} \right) = \frac{15931}{3}, $$
which is the same as @user355088's answer $ \binom{180}{177}\big/\binom{180}{179} = \frac{15931}{3} $.