-1

My question is that how can we evaluate

$\tan^2\left(\dfrac{\pi}{16} \right)+\tan^2\left(\dfrac{3\pi}{16} \right)+\tan^2\left(\dfrac{5\pi}{16} \right)+\tan^2\left(\dfrac{7\pi}{16} \right)$

by using complex numbers. I know how to do it using properties of trigonometry but my professor ask us to use complex numbers to solve this problem.

  • 3
    Method$#2$ of https://math.stackexchange.com/questions/175736/evaluate-tan220-circ-tan240-circ-tan280-circ/175740#175740 OR https://math.stackexchange.com/questions/2807082/prove-sec2-frac-pi7-sec2-frac2-pi7-sec2-frac3-pi7-24-using-t OR https://math.stackexchange.com/questions/951522/trig-sum-tan-21-circ-tan-22-circ-cdots-tan2-89-circ-text – lab bhattacharjee Jan 30 '23 at 05:55
  • Mathematica: $28$. – David G. Stork Jan 30 '23 at 06:06
  • Also here: https://math.stackexchange.com/q/3097674/42969 – Martin R Jan 30 '23 at 14:17

1 Answers1

8

Consider the complex number equation:

$$(z-1)^8+(z+1)^8=0 \tag{1}$$

$$\iff \left(\frac{1+z}{1-z} \right)^8=-1 \tag{2}$$

The roots of $(2)$ are $$z=i\tan\left(\frac{2k+1}{16} \right) \tag{$k=-4,-3,-2,\cdots, 3$}$$

i.e. $$z=\pm i\tan \left(\frac{\pi}{16} \right), \pm i\tan \left(\frac{3\pi}{16} \right), \pm i\tan \left(\frac{5\pi}{16} \right) \mathrm{and} \pm i\tan \left(\frac{7\pi}{16} \right)$$

Putting back to $(1)$, we have

\begin{align} (z-1)^8+(z+1)^8 &=2\prod_{k=0}^3\left(z-i\tan\left(\frac{2k+1}{16} \right)\pi \right)\left(z+i\tan\left(\frac{2k+1}{16} \right)\pi \right)\\ &=2\prod_{k=0}^3\left(z^2+\tan^2\left(\frac{2k+1}{16} \right)\pi \right) \end{align}

Comparing coefficient of $z^6$, we have

$$\tan^2 \left(\frac{\pi}{16} \right)+\tan^2 \left(\frac{3\pi}{16} \right)+\tan^2 \left(\frac{5\pi}{16} \right)+\tan^2 \left(\frac{7\pi}{16} \right)=28$$