Find $$\lim_{n \to \infty} \frac{1}{n}\sum^{2n}_{r =1} \frac{r}{\sqrt{n^2+r^2}}$$
My approach :
$$\lim_{n \to \infty} \frac{1}{n}\sum^{2n}_{r =1} \frac{r}{\sqrt{n^2+r^2}} =\lim_{n \to \infty} \frac{1}{n^2}\sum^{2n}_{r =1} \frac{\frac{r}{n}}{\sqrt{1+\frac{r^2}{n^2}}} $$
If I put $\frac{r}{n} =t $ then we can write it
$$\lim_{n \to \infty} \frac{1}{n^2}\sum^{2n}_{r =1} \frac{t}{\sqrt{1+t^2}} $$ Will it help some how here.. and how can we change the limits then.. please suggest thanks.
\sin
,\log
- see entry 11 in our MathJax guide). – Zev Chonoles Aug 11 '13 at 15:39