I need to find the limit of $$\lim\limits_{n\to \infty}\left\{\left(\frac{2}1\right) \left(\frac{3}2\right)^{2} \left(\frac{4}3\right)^{3} ... \left(\frac{n+1}n\right)^{n} \right\}^{(1/n)}$$
Cancelling out the same quantities in numerators and denominators, I have reached the step: $$\lim\limits_{n\to \infty}\left\{\frac{(n+1)^{n}}{n!} \right\}^{\frac1n}$$
Now I am stuck here. I have searched google for help, but found only the result for $\lim\limits_{n\to\infty}\left\{\frac{1}{n!} \right\}^{(\frac1n)}$.
Which formulae/properties should I use now to proceed from this stage?
Edit: The options for the answer are: a) $e$, b) $1/e$, c) $\pi$, d) $1/\pi$