$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\lim_{n \to \infty}{1^{p} + 3^{p} + \cdots + \pars{2n + 1}^{\,p} \over
n^{p + 1}}
=
\lim_{n \to \infty}{\sum_{k = 0}^{n}\pars{2k + 1}^{\,p} \over n^{p + 1}}
\\[5mm] = &\
\lim_{n \to \infty}{\sum_{k = 0}^{n + 1}\pars{2k + 1}^{\,p} -
\sum_{k = 0}^{n}\pars{2k + 1}^{\,p} \over \pars{n + 1}^{p + 1} - n^{p + 1}}
\qquad\pars{~Stolz-Ces\grave{a}ro\ Theorem~}
\\[5mm] = &\
\lim_{n \to \infty}{\pars{2n + 3}^{\,p} \over n^{p + 1}
\bracks{\pars{1 + 1/n}^{p + 1} - 1}} =
2^{p}\lim_{n \to \infty}{\bracks{1 + 3/\pars{2n}}^{\,p} \over n
\bracks{\pars{1 + 1/n}^{p + 1} - 1}}\label{1}\tag{1}
\end{align}
Note that
$\ds{{\bracks{1 + 3/\pars{2n}}^{\,p} \over n
\bracks{\pars{1 + 1/n}^{p + 1} - 1}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{1 + 3p/\pars{2n} + 9p\pars{p - 1}/\pars{8n^{2}}\over
n\bracks{\pars{p + 1}/n + \pars{p + 1}p/\pars{2n^{2}}}}}$
\begin{align}
&\mbox{such that}\quad\lim_{n \to \infty}{\bracks{1 + 3/\pars{2n}}^{\,p} \over n
\bracks{\pars{1 + 1/n}^{p + 1} - 1}} = {1 \over p + 1}
\\[5mm] &\
\mbox{and}\quad\pars{~\mrm{see}\ \eqref{1}~}\quad
\bbx{\lim_{n \to \infty}{1^{p} + 3^{p} + \cdots + \pars{2n + 1}^{\,p} \over
n^{p + 1}}
=
{2^{p} \over p + 1}}
\end{align}