Evaluate limit by expressing it as a definite integral.
$$\lim_{n\to\infty}\frac{\pi}{2n}\left[\cos\left(\frac{\pi}{2n}\right)+\cos\left(\frac{\pi}{n}\right)+\cos\left(\frac{3\pi}{2n}\right)+\cdots+\cos\left(\frac{(n-1)\pi}{2n}\right)\right]$$
I do not know how to write this formula out first as a sum formula, any help would be appreciated!