0

Hy, I am trying to solve this limit problem. First I see that this problem could be some integral sums problem but I couldn't see how soo please help me with explaining me this and giving me some other example.

$$\lim_{n\to\infty}\left(\ln\sqrt[n+1]{\frac{n+1}{n}}+\ln\sqrt[n+2]{\frac{n+2}{n}}+\cdots+\ln\sqrt[3n]{\frac{3n}{n}}\right)$$

Yuriy S
  • 31,474
josf
  • 1,317
  • So you're looking for $lim_{n \rightarrow \infty} \sum_{i=n+1}^{3n} \frac{1}{i} (log(i)-log(n))$. – Zubzub Aug 03 '16 at 14:10

1 Answers1

6

This is the limit of a Riemann sum $$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{2n}\frac{\ln\left(1+\frac{k}{n}\right)}{1+\frac{k}{n}}=\int_0^2 \frac{\ln\left(1+x\right)}{1+x}\,dx=\frac{1}{2}\left[\ln^2(1+x)\right]_0^2=\frac{\ln^2(3)}{2}.$$ More generally, for any integers $0<A<B$, $$\lim_{n\to\infty}\sum_{k=An+1}^{Bn}\ln\sqrt[k]{\frac{k}{n}}=\frac{\ln^2(B)-\ln^2(A)}{2}.$$

P.S. The given case is obtained from the general one for $B=3$ and $A=1$: $$\frac{1}{n}\sum_{k=1}^{2n}\frac{\ln\left(1+\frac{k}{n}\right)}{1+\frac{k}{n}}=\sum_{k=1}^{2n}\frac{\ln\left(\frac{n+k}{n}\right)}{n+k}=\sum_{j=n+1}^{3n}\frac{\ln\left(\frac{j}{n}\right)}{j} =\sum_{j=n+1}^{3n}\ln\sqrt[j]{\frac{j}{n}}$$ where $j=n+k$.

Robert Z
  • 145,942
  • Ok, can you please say how you see or know the first step? – josf Aug 03 '16 at 14:40
  • 2
    @LovroSindičić $$\ln \prod_{k=1}^{2n} \left(\frac{n+k}{n}\right)^{\frac{1}{n+k}} = \sum_{k=1}^{2n} \ln \left(\frac{n+k}{n}\right)^{\frac{1}{n+k}}= \sum_{k=1}^{2n}\frac{1}{n+k} \ln \left(1+\frac{k}{n}\right) = \frac{1}{n}\sum_{k=1}^{2n}\frac{1}{1+\frac{k}{n}} \ln \left(1+\frac{k}{n}\right).$$ These manipulations can be done more or less automatically, "looking for a way out of this mess." Then, once you get there, identifying a Riemann sum is much easier (and a matter of habit). – Clement C. Aug 03 '16 at 14:48
  • 1
    @LovroSindičić

    Keep in mind that if $f$ is continuous in $[0,1]$ then $\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)\to \int_0^1f(x),dx$ and try to guess for the function $f$. See more examples:

    http://math.stackexchange.com/questions/995058/the-limit-of-a-sum?rq=1

    http://math.stackexchange.com/questions/1039221/expressing-limit-of-sum-definite-integral?rq=1

    – Robert Z Aug 03 '16 at 14:53
  • Is there a typo in the generalization? Shouldn't it be:

    $$\lim_{n \rightarrow + \infty}\sum_{k=An+1}^{Bn}\ln\sqrt[k]{\frac{k}{n}}=\frac{\ln^2(B+1)-\ln^2(A+1)}{2}$$

    – Tolaso Dec 15 '19 at 08:38
  • @Tolaso No, it's correct. Please see my edit. – Robert Z Dec 15 '19 at 08:55