This is the limit of a Riemann sum
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{2n}\frac{\ln\left(1+\frac{k}{n}\right)}{1+\frac{k}{n}}=\int_0^2 \frac{\ln\left(1+x\right)}{1+x}\,dx=\frac{1}{2}\left[\ln^2(1+x)\right]_0^2=\frac{\ln^2(3)}{2}.$$
More generally, for any integers $0<A<B$,
$$\lim_{n\to\infty}\sum_{k=An+1}^{Bn}\ln\sqrt[k]{\frac{k}{n}}=\frac{\ln^2(B)-\ln^2(A)}{2}.$$
P.S. The given case is obtained from the general one for $B=3$ and $A=1$:
$$\frac{1}{n}\sum_{k=1}^{2n}\frac{\ln\left(1+\frac{k}{n}\right)}{1+\frac{k}{n}}=\sum_{k=1}^{2n}\frac{\ln\left(\frac{n+k}{n}\right)}{n+k}=\sum_{j=n+1}^{3n}\frac{\ln\left(\frac{j}{n}\right)}{j}
=\sum_{j=n+1}^{3n}\ln\sqrt[j]{\frac{j}{n}}$$
where $j=n+k$.