I need to find the value of $$L=\lim_{n \rightarrow \infty}\displaystyle\prod_{r=1}^{n} \left(1+\dfrac{r^2}{n^2}\right)^{1/n}$$
Is doing this OK?--
$$\begin{align} L &=\lim_{n \rightarrow \infty}\left(1+\dfrac{1^2}{n^2}\right)^{1/n}\left(1+\dfrac{2^2}{n^2}\right)^{1/n} \ ... \ \left(1+\dfrac{n^2}{n^2}\right)^{1/n} \\ &=\lim_{n \rightarrow \infty} e^{1^2/n^3} e^{2^2/n^3} \ ... \ e^{n^2/n^3} \\ &= \lim_{n \rightarrow \infty} e^{n (n+1)(2n+1)/6n^3}\\ &=e^{1/3} \end{align}$$
I get $L=e^{1/3}$ but the answer is $2e^{\pi/2-2}$.
Where have I gone wrong? How to arrive at the correct answer $2e^{\pi/2-2}$?
Thank you.