4

$$\lim_{n\to \infty } \frac 1n \sum_{k=1}^{n} k \ln\left(\frac{n^2+(k-1)^2}{n^2+k^2}\right)$$

Basically, First thought I had was to convert the limit into definite integral but couldn't do it.I don't have any other idea to solve it.

Thanks for any help in advanced.

Jochen
  • 2,260

2 Answers2

4

A little help with a solution, try to complete the solution yourself, next time please write your attempt.

Hint : $$\sum_{k=1}^{n} k \ln(\frac{n^2+(k-1)^2}{n^2+k^2})=\sum_{k=1}^{n} k \ln(n^2+(k-1)^2)-k\ln(n^2+k^2)\\~\\=\ln(n^2)-\ln(n^2+1)+2\ln(n^2+1)-2\ln(n^2+4)+3\ln(n^2+4)-3\ln(n^2+9)+...+n\ln(n^2+(n-1)^2)-n\ln(n^2+n^2)\\~\\=\ln(n^2)+\ln(n^2+1)+\ln(n^2+4)+...+\ln(n^2+(n-1)^2)-n\ln(2n^2)\\~\\=-n\ln(2n^2)+\sum_{k=1}^{n-1} \ln(n^2+k^2)$$

Mostafa
  • 1,479
  • 14
4

Using $$ \ln(1-x)=-x+O(x^2) $$ one has \begin{eqnarray} &&\lim_{n\to \infty } \frac 1n \sum_{k=1}^{n} k \ln\left(\frac{n^2+(k-1)^2}{n^2+k^2}\right)\\ &=&\lim_{n\to \infty } \sum_{k=1}^{n} \frac kn \ln\left(1-\frac{2k-1}{n^2+k^2}\right)\\ &=&\lim_{n\to \infty } \sum_{k=1}^{n} \frac kn\left(-\frac{2k-1}{n^2+k^2}+O\bigg(\bigg(\frac{2k-1}{n^2+k^2}\bigg)^2\bigg)\right)\\ &=&-\lim_{n\to \infty } \sum_{k=1}^{n}\frac{k(2k-1)}{n(n^2+k^2)} \end{eqnarray} which can be evaluated as $\frac\pi2-2$ by Mathematica. I don't know how to get this result by hand.

xpaul
  • 44,000