$$ \lim_{x \rightarrow \infty} x\left(\frac{1}{x^2}+\frac{1}{(x+1)^2}+...+\frac{1}{(2x-1)^2}\right)$$
My answer is 7/24, but the correct answer provided by the book is 1/2.
Could anyone help me? Thanks for any insights.
$$ \lim_{x \rightarrow \infty} x\left(\frac{1}{x^2}+\frac{1}{(x+1)^2}+...+\frac{1}{(2x-1)^2}\right)$$
My answer is 7/24, but the correct answer provided by the book is 1/2.
Could anyone help me? Thanks for any insights.
$$\lim_{n\to\infty} n\left(\frac1{(n+0)^2}+\frac1{(n+1)^2}+\frac1{(n+n-1)^2}\right)$$
$$=\lim_{n\to\infty} n\left(\frac1{(n+1)^2}+\frac1{(n+1)^2}+\frac1{(n+n)^2}\right)-\lim_{n\to\infty} n\left(\frac1{(2n)^2}-\frac1{n^2}\right)$$
$$=\lim_{n\to\infty}\frac1n\sum_{1\le r\le n}\frac{n^2}{(n+r)^2}-0$$
$$=\lim_{n\to\infty}\frac1n\sum_{1\le r\le n}\frac1{\left(1+\frac{r}n\right)^2}$$
$$=\int_0^1\frac1{(1+x)^2}dx$$
$$\text{as }\lim_{n \to \infty} \frac1n\sum_{r=1}^n f\left(\frac rn\right)=\int_0^1f(x)dx$$