A different version of the question:
let $f:(a,b)\longrightarrow\mathbb{R}$ be a differentiable function in $(a,b)$
except one point $x_{0}\in(a,b)$ where we don't know if $f$ is differentiable at.
let $lim_{x\rightarrow x_{0}}f'(x)=L\in\mathbb{R}$.
?prove: $f$ is differentiable in $x=x_{0}$ and $f'(x_{0})=L$ .
according to the darbouex's therom, the derivative could only have a discontinuity point of the type “removable discontinuity”
where $lim_{x\longrightarrow x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}\stackrel{\color{red}{**}}{\color{black}{\neq}} lim_{x\longrightarrow x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}$ . therefore, I'll preform a contradiction proof.
Let's suppose that $lim_{x\longrightarrow x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}\neq lim_{x\longrightarrow x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}$ so that $f$ is not difrrentiable at $x_{0}$.
using the darbouex's therom, let $f'(a)$ be the derivative of $f$ to the right of $a$;
$$lim_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x-a}= f'(a) , lim_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x-b} = f'(b)$$ and let $$ f'(x_{1}) = lim_{x\rightarrow x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-b} , f'(x_{2}) = lim_{x\longrightarrow x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}$$.
in the interval of $(a,x_{0})$ where $f$ is differentiable, for every $y_{1}$ as $y_{1} $ is between $f'(a)$ and $f'(x_{1}):$ there exist $t_{1}\in[a,x_{0}]:f'(t_{1})=y_{1}$.
in the interval of $(x_{0},b)$ where $f$ is differentiable, for every $y_{2}$ as $y_{2}$ is between $f'(x_{2})$ and $f'(b): $ there exist $t_{2}\in[x_{0},b]:f'(t_{2})=y_{2}$.
therefore, according to $\color{red}{**}$ $$lim_{t_{1}\longrightarrow x_{0}^{-}}f'(t_{1})\neq lim_{t_{2\longrightarrow}x_{0}^{+}}f'(t_{2})$$ but that's a contradiction to the fact that $$lim_{x\rightarrow x_{0}}f'(x)=L=lim_{t_{1}\longrightarrow x_{0}^{-}}f'(t_{1})\neq lim_{t_{2\longrightarrow}x_{0}^{+}}f'(t_{2})=lim_{x\rightarrow x_{0}}f'(x)=L $$ hence, $f$ is differentiable at $x_{0}$ , and $f'(x_{0})=L$ .