Let $F:[0,1]\rightarrow \mathbb{R} $ $$F(x)=\int _{\sqrt x}^{1}\arcsin(t^2) \,dt$$
Is $F$ differentiable?
The function $f(t)=\arcsin(t^2)$ is continuous on $[0,1]$ so is integrable on $[0,1]$ and $$ \frac{d}{dx}\sqrt x=\frac{1}{2\sqrt x}$$
So $F$ is differentiable and by the F.T.C
$$ F'(x)=-\frac{\arcsin(x)}{2\sqrt x}$$
Is correct my answer?