Assume that $f$ be continuous on $\mathbb{R}$, $f'(x)$ exists for all $x\neq 0$, and $\lim_{x\rightarrow 0} f'(x)=1$. We need to show $f'(0)$ exist and is equal to $1$.
$f'(0)=\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x}$, $\lim_{x\rightarrow 0}f'(x)=1\Rightarrow\lim_{x\rightarrow 0}\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=1$...am I going in the right direction? Please help.