Let $f: [-1,1]$ be a differentiable function such that $\displaystyle\lim_{x \to 0} f'(x) = a$. Show that $f'(0) = a$.
I tried the following:
$a = \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(y) - f(x)}{y-x} =$
$= \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(y) - f(0)}{y-x} + \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(0) - f(x)}{y-x} =$
$= \displaystyle\lim_{y \to x} \displaystyle\lim_{x \to 0} \dfrac{f(y) - f(0)}{y-x} + \displaystyle\lim_{y \to x} \displaystyle\lim_{x \to 0} \dfrac{f(0) - f(x)}{y-x} =$
$= \displaystyle\lim_{y \to 0} \dfrac{f(y) - f(0)}{y} + \displaystyle\lim_{y \to 0} \dfrac{f(0) - f(0)}{y} =$
$= \displaystyle\lim_{y \to 0} \dfrac{f(y) - f(0)}{y} + 0 = f'(0)$
But I don't know if I can exchange the order of limits. Can I do it?