0

Let $f: [-1,1]$ be a differentiable function such that $\displaystyle\lim_{x \to 0} f'(x) = a$. Show that $f'(0) = a$.

I tried the following:

$a = \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(y) - f(x)}{y-x} =$

$= \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(y) - f(0)}{y-x} + \displaystyle\lim_{x \to 0} \displaystyle\lim_{y \to x} \dfrac{f(0) - f(x)}{y-x} =$

$= \displaystyle\lim_{y \to x} \displaystyle\lim_{x \to 0} \dfrac{f(y) - f(0)}{y-x} + \displaystyle\lim_{y \to x} \displaystyle\lim_{x \to 0} \dfrac{f(0) - f(x)}{y-x} =$

$= \displaystyle\lim_{y \to 0} \dfrac{f(y) - f(0)}{y} + \displaystyle\lim_{y \to 0} \dfrac{f(0) - f(0)}{y} =$

$= \displaystyle\lim_{y \to 0} \dfrac{f(y) - f(0)}{y} + 0 = f'(0)$

But I don't know if I can exchange the order of limits. Can I do it?

Sávio
  • 1,006

1 Answers1

2

An idea:

Directly from definition

$$f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}x\stackrel{\text{l'Hospital}}=\lim_{x\to 0}f'(x)\stackrel{\text{given!}}=a$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287