Let $\displaystyle{ \epsilon > 0}$. Since $\displaystyle{ \lim_{x \to a^+ } f'(x) = A }$ there exist $\displaystyle{ \delta >0 }$ such that for all $x$ with $a<x<a+ \delta$ is $\displaystyle{ |f'(x) -A| < \epsilon \quad (1)}$.
Let $ x \in (a,a+ \delta) $ from Lagrange's Mean Value Theorem we get:
$$ \frac{ f(x) - f(a) }{ x-a} = f'(c_x), \quad a < c_x < x < a+ \delta $$
Substitute in $(1)$ we get:
$$ |f'(c_x) - A | < \epsilon $$
$\implies$
$$ | \frac{f(x)-f(a)}{x-a} -A | < \epsilon$$
$\implies$
$$ \lim_{ x \to a^+} \frac{f(x)-f(a)}{x-a}= A$$
$\implies$
$$ f'_{+} (a) =A$$