Fix $\epsilon > 0$ and $a\in \Bbb R$. Let $L = \lim_{x\to a} f'(x)$. There exists a $\delta_1 > 0$ such that for all $x$, $0 < \lvert x - a\rvert < \delta_1$ implies $\lvert f'(x) - L\rvert < \epsilon$. As $f$ is differentiable at $a$, there exists a $\delta_2 > 0$ such that for all $x$, $0 < \lvert x - a\rvert < \delta_2$ implies $\lvert f(x) - f(a) - f'(a)(x - a)\rvert < \epsilon\lvert x - a\rvert$. By the mean value theorem, for every $x$ there is an $a_x$ in between $x$ and $a$ such that $f(x) - f(a) = f'(a_x)(x - a)$. Thus $\lvert f'(a_x) - f'(a)\rvert < \epsilon$ whenever $0 < \lvert x - a\rvert < \delta_2$. Let $\delta = \min\{\delta_1, \delta_2\}$. If $0 < \lvert x - a\rvert < \delta$, then $0 < \lvert a_x - a\rvert < \lvert x - a\rvert < \delta_1$, and so $\lvert f'(a_x) - L\rvert < \epsilon$; by the triangle inequality,
$$\lvert f'(x) - f'(a)\rvert \le \lvert f'(x) - L\rvert + \lvert L - f'(a_x)\rvert + \lvert f'(a_x) - f'(a)\rvert < \epsilon + \epsilon + \epsilon = 3\epsilon.$$
Since $\epsilon$ and $a$ were arbitrary, the result follows.