We seek to evaluate
$$\sum_{l=0}^m (-4)^l {m\choose l} {2l\choose l}^{-1}
\sum_{k=0}^n \frac{(-4)^k}{2k+1} {n\choose k} {2k\choose k}^{-1}
{k+l\choose l}.$$
We start with the inner term and use the Beta function identity
$$\frac{1}{2k+1} {2k\choose k}^{-1}
= \int_0^1 x^k (1-x)^k \; dx.$$
We obtain
$$\int_0^1 [z^l]
\sum_{k=0}^n {n\choose k} (-4)^k x^k (1-x)^k \frac{1}{(1-z)^{k+1}}
\; dx
\\ = [z^l] \frac{1}{1-z}
\int_0^1 \left(1-\frac{4x(1-x)}{1-z}\right)^n \; dx
\\ = [z^l] \frac{1}{(1-z)^{n+1}}
\int_0^1 ((1-2x)^2-z)^n \; dx
\\ = \sum_{q=0}^l {l-q+n\choose n}
[z^q] \int_0^1 ((1-2x)^2-z)^n \; dx
\\ = \sum_{q=0}^l {l-q+n\choose n}
{n\choose q} (-1)^q \int_0^1 (1-2x)^{2n-2q} \; dx
\\ = \sum_{q=0}^l {l-q+n\choose n}
{n\choose q} (-1)^q
\left[-\frac{1}{2(2n-2q+1)} (1-2x)^{2n-2q+1}\right]_0^1
\\ = \sum_{q=0}^l {l-q+n\choose n}
{n\choose q} (-1)^q \frac{1}{2n-2q+1}.$$
Now we have
$$ {l-q+n\choose n} {n\choose q} (-1)^q \frac{1}{2n-2q+1}
\\ = \mathrm{Res}_{z=q}
\frac{(-1)^n}{2n+1-2z}
\prod_{p=0}^{n-1} (l+n-p-z) \prod_{p=0}^n \frac{1}{z-p}.$$
Residues sum to zero and since $\lim_{R\to\infty} 2\pi R \times R^n /
R / R^{n+1} = 0$ we may evaluate the sum using the negative of the
residue at $z=(2n+1)/2.$ We get
$$\frac{1}{2} (-1)^n
\prod_{p=0}^{n-1} (l+n-p-(2n+1)/2)
\prod_{p=0}^n \frac{1}{(2n+1)/2-p}
\\ = (-1)^n
\prod_{p=0}^{n-1} (2l+2n-2p-(2n+1))
\prod_{p=0}^n \frac{1}{2n+1-2p}
\\ = (-1)^n
\prod_{p=0}^{n-1} (2l-2p-1)
\frac{2^n n!}{(2n+1)!}
\\ = (-1)^n \frac{1}{2l+1}
\prod_{p=-1}^{n-1} (2l-2p-1)
\frac{2^n n!}{(2n+1)!}
\\ = (-1)^n \frac{2^n n!}{(2n+1)!} \frac{1}{2l+1}
\prod_{p=0}^{n} (2l-2p+1)
\\ = (-1)^n \frac{2^{2n+1} n!}{(2n+1)!} \frac{1}{2l+1}
\prod_{p=0}^{n} (l+1/2-p)
\\ = (-1)^n \frac{2^{2n+1} n! (n+1)!}{(2n+1)!} \frac{1}{2l+1}
{l+1/2\choose n+1}.$$
We obtain for our sum
$$(-1)^n 2^{2n+1} {2n+1\choose n}^{-1}
\sum_{l=0}^m (-4)^l {m\choose l} \frac{1}{2l+1} {2l\choose l}^{-1}
{l+1/2\choose n+1}.$$
We now work with the remaining sum without the factor in front. We
obtain
$$\int_0^1 [z^{n+1}] \sqrt{1+z}
\sum_{l=0}^m {m\choose l} (-4)^l x^l (1-x)^l (1+z)^l \; dx
\\ = [z^{n+1}] \sqrt{1+z}
\int_0^1 (1-4x(1-x)(1+z))^m \; dx
\\ = [z^{n+1}] \sqrt{1+z}
\int_0^1 \sum_{q=0}^m {m\choose q} (1-2x)^{2m-2q}
(-1)^q (4x(1-x))^q z^q \; dx
\\ = \sum_{q=0}^m {m\choose q} {1/2\choose n+1-q}
\int_0^1
(1-2x)^{2m-2q}
(-1)^q (4x(1-x))^q \; dx
\\ = \sum_{q=0}^m {m\choose q} {1/2\choose n+1-q}
\int_0^1
(1-2x)^{2m}
\left(1-\frac{1}{(1-2x)^2}\right)^q \; dx
\\ = \sum_{q=0}^m {m\choose q} {1/2\choose n+1-q}
\sum_{p=0}^q {q\choose p} (-1)^p \int_0^1 (1-2x)^{2m-2p} \; dx
\\ = \sum_{q=0}^m {m\choose q} {1/2\choose n+1-q}
\sum_{p=0}^q {q\choose p} (-1)^p \frac{1}{2m-2p+1}.$$
Re-writing then yields
$$\sum_{p=0}^m (-1)^p \frac{1}{2m-2p+1}
\sum_{q=p}^m {m\choose q} {1/2\choose n+1-q} {q\choose p}.$$
Observe that
$${m\choose q} {q\choose p} =
\frac{m!}{(m-q)! \times p! \times (q-p)!}
= {m\choose p} {m-p\choose m-q}$$
so that we find
$$\sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
\sum_{q=p}^m {m-p\choose m-q} {1/2\choose n+1-q}
\\ = \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
\sum_{q=0}^{m-p} {m-p\choose m-p-q} {1/2\choose n+1-p-q}
\\ = \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
\sum_{q=0}^{m-p} {m-p\choose q} {1/2\choose n+1-p-q}.$$
Continuing we obtain
$$\sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
\sum_{q=0}^{m-p} {m-p\choose q} [z^{n+1-p}] z^q \sqrt{1+z}
\\ = \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
[z^{n+1-p}] \sqrt{1+z} \sum_{q=0}^{m-p} {m-p\choose q} z^q
\\ = \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
[z^{n+1-p}] (1+z)^{m-p+1/2}
\\ = \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2m-2p+1}
{m-p+1/2\choose n+1-p}
\\ = (-1)^m \sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2p+1}
{p+1/2\choose n+1-m+p}
\\ = (-1)^m
\sum_{p=0}^m {m\choose p} (-1)^p \frac{1}{2} \frac{1}{m-n-1/2}
{p-1/2\choose n+1-m+p}
\\ = (-1)^m \frac{1}{2m-2n-1}
\sum_{p=0}^m {m\choose p} (-1)^p
{p-1/2\choose n+1-m+p}.$$
Concluding with a closed form we establish at last
$$(-1)^m \frac{1}{2m-2n-1}
\sum_{p=0}^m {m\choose p} (-1)^p [z^{n+1-m}] z^{-p} (1+z)^{p-1/2}
\\ = (-1)^m \frac{1}{2m-2n-1} [z^{n+1-m}] (1+z)^{-1/2}
\sum_{p=0}^m {m\choose p} (-1)^p z^{-p} (1+z)^p
\\ = (-1)^m \frac{1}{2m-2n-1}
[z^{n+1-m}] (1+z)^{-1/2} \left(1-\frac{1+z}{z}\right)^m
\\ = \frac{1}{2m-2n-1} [z^{n+1}] (1+z)^{-1/2}.$$
We finish by re-introducing the factor in front to obtain
$$(-1)^n 2^{2n+1} {2n+1\choose n}^{-1} \frac{1}{2m-2n-1}
{-1/2\choose n+1}
\\ = (-1)^n 2^{2n+1} {2n+1\choose n}^{-1} \frac{1}{2m-2n-1}
\frac{1}{(n+1)!} \prod_{q=0}^{n} (-1/2 -q)
\\ = (-1)^n 2^{n} {2n+1\choose n}^{-1} \frac{1}{2m-2n-1}
\frac{1}{(n+1)!} \prod_{q=0}^{n} (-1 -2q)
\\ = 2^{n} {2n+1\choose n}^{-1} \frac{1}{2n+1-2m}
\frac{1}{(n+1)!} \prod_{q=0}^{n} (1 +2q)
\\ = 2^{n} {2n+1\choose n}^{-1} \frac{1}{2n+1-2m}
\frac{1}{(n+1)!} \frac{(2n+1)!}{2^n n!}.$$
Yes indeed this is
$$\bbox[5px,border:2px solid #00A000]{
\frac{1}{2n+1-2m}.}$$
Here I have chosen to document the simple steps as well as the
complicated ones to aid all types of readers.