We seek to verify that
$$\sum_{l=0}^{n} {n\choose l}^2 (x+y)^{2l} (x-y)^{2n-2l}
= \sum_{l=0}^{n} {2l\choose l} {2n-2l\choose n-l}
x^{2l}y^{2n-2l}.$$
Now we see on the LHS that the powers of $x$ and $y$ always add up to
$2n$ and the exponent on $x$ determines the one on $y.$ Extracting the
coefficient on $[x^q][y^{2n-q}]$ we obtain
$$\sum_{l=0}^{n} {n\choose l}^2
\sum_{p=0}^q {2l\choose p} (-1)^{2n-2l-(q-p)} {2n-2l\choose q-p}
\\ = \sum_{l=0}^{n} {n\choose l}^2
\sum_{p=0}^q {2l\choose p} (-1)^{q-p}
[z^{q-p}] (1+z)^{2n-2l}
\\ = [z^q] (-1)^q \sum_{l=0}^{n} {n\choose l}^2 (1+z)^{2n-2l}
\sum_{p=0}^q {2l\choose p} (-1)^p z^p.$$
We may extend $p$ to infinity because with $p\gt q$ there is no
contribution to $[z^q]$, getting
$$[z^q] (-1)^q \sum_{l=0}^{n} {n\choose l}^2 (1+z)^{2n-2l}
\sum_{p\ge 0} {2l\choose p} (-1)^p z^p
\\ = [z^q] (-1)^q \sum_{l=0}^{n} {n\choose l}^2 (1+z)^{2n-2l}
(1-z)^{2l}
\\ = [z^q] (-1)^q [w^n] (1+w(1-z)^2)^n (1+w(1+z)^2)^n
\\ = [z^q] [w^n] (1+w(1-z)^2)^n (1+w(1+z)^2)^n.$$
Re-write this as
$$[z^q] [w^n] ((w(1+z^2)+1)^2 - 4 w^2 z^2)^n
\\ = [z^q] [w^n]
\sum_{p=0}^n {n\choose p} (-1)^p 2^{2p} w^{2p} z^{2p}
(w(1+z^2)+1)^{2n-2p}
\\ = [z^q]
\sum_{p=0}^n {n\choose p} (-1)^p 2^{2p} z^{2p}
[w^{n-2p}] (w(1+z^2)+1)^{2n-2p}
\\ = [z^q]
\sum_{p=0}^n {n\choose p} (-1)^p 2^{2p} z^{2p}
{2n-2p\choose n-2p} (1+z^2)^{n-2p}.$$
We observe at this point that we get zero here when $q$ is odd, which
agrees with the target formula. We are thus justified in putting
$q=2l$ to get
$$[z^l] \sum_{p=0}^n {n\choose p} (-1)^p 2^{2p} z^{p}
{2n-2p\choose n-2p} (1+z)^{n-2p}
\\ = \sum_{p=0}^n {n\choose p} (-1)^p 2^{2p}
{2n-2p\choose n-2p} {n-2p\choose l-p}.$$
Note that
$${n\choose p} {2n-2p\choose n-2p} {n-2p\choose l-p}
= \frac{(2n-2p)!}{p! \times (n-p)! \times
(l-p)! \times (n-l-p)!}
\\ = {l\choose p} \frac{(2n-2p)!}{(n-p)! \times
l! \times (n-l-p)!}
= {l\choose p} {2n-2p\choose n-p} {n-p\choose l}.$$
Re-indexing we get for the sum
$$(-1)^n 2^{2n} \sum_{p=0}^n {l\choose n-p} {2p\choose p}
{p\choose l} (-1)^p 2^{-2p}
\\ = (-1)^n 2^{2n} \sum_{p=0}^n {2p\choose p}
(-1)^p 2^{-2p} [z^{n-p}] (1+z)^l
[w^l] (1+w)^p
\\ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l]
\sum_{p=0}^n {2p\choose p}
(-1)^p 2^{-2p} z^p (1+w)^p.$$
We may once more extend $p$ to infinity because there is no
contribution from the sum term to the coefficient extractor $[z^n]$
when $p\gt n,$ obtaining
$$(-1)^n 2^{2n} [z^n] (1+z)^l [w^l]
\sum_{p\ge 0} {2p\choose p}
(-1)^p 2^{-2p} z^p (1+w)^p
\\ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l]
\frac{1}{\sqrt{1+z(1+w)}}
\\ = (-1)^n 2^{2n} [z^n] (1+z)^l [w^l]
\frac{1}{\sqrt{1+z+wz}}
\\ = (-1)^n 2^{2n} [z^n] (1+z)^{l-1/2} [w^l]
\frac{1}{\sqrt{1+wz/(1+z)}}
\\ = (-1)^n 2^{2n} [z^n] (1+z)^{l-1/2}
{2l\choose l} (-1)^l 2^{-2l} z^l \frac{1}{(1+z)^l}
\\ = (-1)^{n-l} 2^{2n-2l} {2l\choose l}
[z^{n-l}] \frac{1}{\sqrt{1+z}}
\\ = (-1)^{n-l} 2^{2n-2l} {2l\choose l}
{2n-2l\choose n-l} (-1)^{n-l} 2^{-(2n-2l)}
\\ = {2l\choose l} {2n-2l\choose n-l}.$$
This is the claim. Credit goes to the Egorychev method which was
presented here in formal power series notation.