Is there a general formula for finding the primitive of $$e^{ax}\sin(bx)?$$
I've done this manually with $a=9$ and $b=4$ using Euler's formulas. But it takes a bit of time. Is there a pattern here?
Is there a general formula for finding the primitive of $$e^{ax}\sin(bx)?$$
I've done this manually with $a=9$ and $b=4$ using Euler's formulas. But it takes a bit of time. Is there a pattern here?
There is a pattern. Differentiating a function of the form $e^{ax}\sin (bx)$ yields a linear combination of a function of the same form, and a function $e^{ax}\cos (bx)$. The analogous property holds for functions $e^{ax}\cos (bx)$. So the primitive of $e^{ax}\sin (bx)$ will be a linear combination of $e^{ax}\sin (bx)$ and $e^{ax}\cos (bx)$ (plus a constant).
It remains to find the coefficients.
$$\begin{align} \frac{d}{dx}\left(e^{ax}(m\sin (bx) + n\cos (bx)\right) &= e^{ax}\left(a\bigl(m\sin(bx) + n\cos(bx)\bigr) + \bigl(bm\cos(bx) - bn\sin(bx)\bigr)\right)\\ &= e^{ax}\left((am - bn)\sin (bx) + (an+bm)\cos(bx)\right) \end{align}$$
Now solve the linear system
$$\begin{align} am - bn &= 1\\ an + bm &= 0. \end{align}$$
Notice that $$\sin(bx)=\mathrm{Im}(e^{ibx})$$
so we need just take the imaginary part of this antiderivative
$$\int e^{ax}e^{ibx}dx=\frac{1}{a+ib}e^{(a+ib)x}+C$$
Hint Integration by parts
$$\int u \ dv =uv-\int v \ du $$
Make substition $$u=\sin(bx)\ \Rightarrow \ du=b\cos (bx) \ dx$$ and $$\ dv=e^{ax} \ dx \Rightarrow v= \frac{e^{ax}}{a}$$ So $$\int e^{ax} \sin(bx) \ dx=\frac{e^{ax}}{a}\sin(bx)-\frac ba\int e^{ax}\cos bx \ dx$$
Then another integration by parts for $\int e^{ax}\cos bx \ dx$ . I think you can do the rest of it.
Try by parts twice (assuming $\;ab\neq 0\;$ to avoid trivialities):
$$u=e^{ax}\;\;,\;\;u'=ae^{ax}\\ v'=\sin bx\;\;,\;\;v=-\frac1b\cos bx$$
and thus
$$I:=\int e^{ax}\sin bx\,dx=-\frac1be^{ax}\cos bx+\frac ab\int e^{ax}\cos bx\,dx=$$
$$=-\frac1be^{ax}\cos bx+\frac a{b^2}e^{ax}\sin bx-\frac{a^2}{b^2}\int e^{ax}\sin bx\,dx$$
Well, now just past the last rightmost summand to the left side (above) and do a little algebra:
$$\left(1+\frac{a^2}{b^2}\right)I=\frac{e^{ax}}b\left(\frac 1b\sin bx-\cos bx\right)\implies I=\ldots$$
Write $\sin bx = \Im e^{ibx}$, so that
$$e^{ax} \sin bx = \Im e^{ax}e^{ibx}=e^{(a+ib)x}.$$
Integrate this as a regular exponential and recover the imaginary part:
$$\int e^{ax} \sin (bx) dx = \int \Im e^{ax}e^{ibx}dx= \Im \int e^{(a+ib)x}dx.$$
There are couple of ways to do this such as IBP(Integration by parts) but the method I will be using is by using complex numbers:
Using euler's identity which is:
$$e^{ix} = \cos(x) + i \sin(x)$$
We can say that:
$$e^{-ix} = \cos(-x) + i \sin(-x)$$
Cosine is an even function and sine is an odd function so this means that:
$$e^{-ix} = \cos(x) - i \sin(x)$$
Since we are looking for what sin(x) is we multiply the equation by -1:
$$e^{ix} = \cos(x) + i \sin(x)$$ $$-e^{-ix} = -\cos(x) + i \sin(x)$$
The cosines cancel out so your left with:
$$e^{ix}-e^{-ix} = {2i}\sin(x)$$
Divide both sides by 2i and we can say that:
$$\frac{e^{ix}-e^{-ix} } {2i}=\sin(x)$$
If we go back to the integral and substitute this result instead of sin(bx) we end up with:
$$\int e^{ax}(\frac{e^{ibx}-e^{-ibx} } {2i}) dx $$
The $\frac{1} {2i}$ is just a constant so we can factor that out and we can use properties of indices to rewrite the integral in the following way:
$$\frac{1} {2i}\int e^{ax+ibx}-e^{ax-ibx} dx $$
If we use the sum-difference rule we can seperate the integrand into two different integrals then if we factor out the x:
$$\frac{1} {2i}\int e^{x(a+ib)}-\frac{1} {2i}\int e^{x(a-ib)} dx $$
We can integrate the two integrals seperately with integration by inspection and finally end up with:
$$\frac{e^{(a+bi)x}} {2i(a+bi)}\ - \frac{e^{(a-bi)x}} {2i(a-bi)}\ + c $$