1

What is the integral of $$\int e^{ax}.sin(bx)dx$$ I used LIATE rule but even after that I am going round and round but not getting the answer.

1 Answers1

1

$$ du = \mathrm{e}^{ax}, u = \frac{1}{a}\mathrm{e}^{ax}\\ v = \sin (bx), dv = b\cos (bx) $$ then we get $$ I = \int \mathrm{e}^{ax}\sin (bx) dx = \frac{1}{a}\mathrm{e}^{ax}\sin (bx) - \frac{b}{a}\int \mathrm{e}^{ax}\cos (bx)dx $$ then we have $$ \int \mathrm{e}^{ax}\cos (bx)dx $$ using by parts again $$ du = \mathrm{e}^{ax}, u = \frac{1}{a}\mathrm{e}^{ax}\\ v = \cos (bx), dv = -b\sin (bx) $$ we have $$ \int \mathrm{e}^{ax}\cos (bx)dx = \frac{1}{a}\mathrm{e}^{ax}\cos (bx) + \frac{b}{a}\int \mathrm{e}^{ax}\sin (bx)dx = \frac{1}{a}\mathrm{e}^{ax}\cos (bx) + \frac{b}{a}I $$ so putting it all together we find $$ I = \frac{1}{a}\mathrm{e}^{ax}\sin (bx)-\frac{b}{a}\left[\frac{1}{a}\mathrm{e}^{ax}\cos (bx) + \frac{b}{a}I\right] = \frac{1}{a}\mathrm{e}^{ax}\sin (bx)-\frac{b}{a^2}\mathrm{e}^{ax}\cos (bx) -\frac{b}{a^2}I $$ solve for $I$ i.e. your integral.

Chinny84
  • 14,186
  • 2
  • 22
  • 31