Integrate by parts.
$$I=\int e^{ax}\cos (bx)\, dx=\left(e^{ax}\right)\left(\frac{\sin(bx)}{b}\right)-\int \left(ae^{ax}\right)\left(\frac{\sin(bx)}{b}\right)\, dx$$
$$=\left(e^{ax}\right)\left(\frac{\sin(bx)}{b}\right)-\frac{a}{b}\int \left(e^{ax}\right)(\sin (bx)\, dx)$$
$$=\left(e^{ax}\right)\left(\frac{\sin(bx)}{b}\right)-\frac{a}{b}\left(\left(e^{ax}\right)\left(\frac{\cos(bx)}{-b}\right)-\int \left(ae^{ax}\right)\left(\frac{\cos(bx)}{-b}\right)\, dx\right)$$
$$=\left(e^{ax}\right)\left(\frac{\sin(bx)}{b}\right)-\frac{a}{b}\left(e^{ax}\right)\left(\frac{\cos(bx)}{-b}\right)-\frac{a^2}{b^2}I$$
Solve for I:
$$I=\frac{b^2}{a^2+b^2}\left(\frac{e^{ax}\sin(bx)}{b}+\frac{ae^{ax}\cos(bx)}{b^2}\right)+C$$
$$=\frac{e^{ax}}{a^2+b^2}\left(b\sin(bx)+a\cos(bx)\right)+C$$
Now find $\int e^{ax}\sin(bx)\, dx$ in an analogous way.