I guess this might help. The Fourier Sine Integral is given by
$$
f(x) = \int_{0}^{\infty }B(w)\sin(wx)dw
$$
where
$$
B(w) = \frac{2}{\pi}\int_{0}^{\infty }f(x)\sin(wx)dx
$$
Now it is given that
$$
f(x) = \frac{\pi}{2}e^{-x}\cos(x)
$$
Therefore,
$$
B(w) = \frac{2}{\pi}\int_{0}^{\infty }\frac{\pi}{2}e^{-x}\cos(x)\sin(wx)dx
$$
$$
B(w) = \int_{0}^{\infty }e^{-x}\cos(x)\sin(wx)dx \hspace{1cm} ... (1)
$$
Also,
$$
\sin(wx) \cos(x) = \frac{\sin((w+1)x) - \sin((w-1)x)}{2} \hspace{1cm} ... (2)
$$
Now substitute (2) in (1) to get
$$
B(w) = \frac{1}{2}\left [ \int_{0}^{\infty } e^{-x} \sin((w+1)x) dx - \int_{0}^{\infty } e^{-x} \sin((w-1)x) dx \right ]
$$
In order to solve the above integral, we need the following equation (more on this can be found here):
$$
\int{e^{ax}\sin({bx})dx}= \dfrac{e^{ax}}{a^{2}+b^{2}}[a\sin(bx)-b\cos(bx)] + C
$$
If we substitute $a = -1$ and $b = w+1$, we get:
$$
\int_{0}^{\infty } e^{-x} \sin((w+1)x) dx = \frac{w+1}{1+(w+1)^2}
$$
and when we substitute $a = -1$ and $b = w-1$, we get:
$$
\int_{0}^{\infty } e^{-x} \sin((w-1)x) dx = -\frac{w-1}{1+(w-1)^2}
$$
Therefore,
$$
B(w) = \frac{1}{2}\left [ \frac{w+1}{1+(w+1)^2} + \frac{w-1}{1+(w-1)^2} \right ] = \frac{w^3}{w^4+4}
$$
Thus,
$$
\int_{0}^{\infty}\frac{w^3\sin(wx)}{w^4+4} \ dw=\frac{\pi}{2}e^{-x}\cos(x)
$$