I have this Integration by Parts question that I can't seem to find an answer to.
The question is:
$$\int\ e^x \sin(9x)\,dx$$
I used u-substitution:
$$u=e^x,du=e^x\,dx$$ $$dv=\sin(9x)\,dx, v=-\frac{1}{9}\cos(9x)$$
Then I got:
$$-\frac{1}{9}e^x\cos(9x)+\frac{1}{9}\int\ e^x\cos(9x)\,dx$$
After a second integration I used:
$$u=e^x, du=e^x\,dx$$
$$dv=\cos(9x)\,dx, v=\frac{1}{9}\sin(9x)$$
Furthermore,
$$\int\ e^x\sin(9x)dx=-\frac{1}{9}\ e^x\cos(9x)+\frac{1}{9}\left(\frac{1}{9}\ e^x\sin(9x)-\frac{1}{9}\int\ e^x\sin(9x)\,dx\right)$$
$$\int\ e^x\sin(9x)dx=-\frac{1}{9}\ e^x\cos(9x)+\frac{1}{81}\ e^x\sin(9x)-\frac{1}{81}\int\ e^x\sin(9x)\,dx$$
I'm stuck and I'm not sure exactly what to do after this.
Any help would be very grateful..thanks!