Here we provide an answer for arbitrary $\nu > 0 $.
We use the same contour as in my answer above.
Now in order to proceed we need to identify the poles and the branching point of the Laplace transform $u_\alpha^{(b)}(x) $. Since the modified Bessel function of the second kind is multi-valued at the origin only there will be one branching point, namely at $\alpha= 0 $. In addition to this there might be poles, which are zeros of the denominator. From here we learn that in the right half-plane (positive real part) there are no zeros.
All the zeros of the function in question are located in the interior of the second and the third quarters.This means that the potential poles of the Laplace transform have to satisfy:
\begin{equation}
\sqrt{2} \frac{b^{1-\theta}}{1-\theta} \cdot \sqrt{\alpha} = z \tag{1}
\end{equation}
where $|Arg[z]| > \pi/2$ (with the convention that $Arg[z] \in [-\pi,\pi]$. But equation $(1)$ does not have any solutions in $\alpha$ (this is because the square root of a complex number has an argument that is always between $-\pi/2$ and $\pi/2$. Therefore there are no poles.
On the other hand the contribution from the branching point (at the origin) comes from two terms, the first one being an integral of the integrand over $(-R,0)$ and the second one being an integral of the integrand evaluated at $\sqrt{\alpha} \rightarrow - \sqrt{\alpha} $, an integral taken over $(0,-R)$.
This gives us the following formula below:
\begin{eqnarray}
\rho_{\tau_b}(t) &=&
&&\left( \frac{x}{b} \right)^{\nu(1-\theta)} \frac{1}{\pi}
\int\limits_0^\infty
Im\left[ \frac{K_\nu[\sqrt{2} \frac{x^{1-\theta}}{1-\theta} (-\imath) \sqrt{\alpha}] }{K_\nu[\sqrt{2} \frac{b^{1-\theta}}{1-\theta} (-\imath) \sqrt{\alpha}] } \right] \cdot e^{-\alpha t} d\alpha \tag{1}
\end{eqnarray}
Below we fixed $x,b,\nu$(as in the caption of the plot) and we plotted
the probability distribution of the first hitting time $\tau_b$ as a function of time for different values of $\theta=linspace(0.6,09,5)$ (from violet to red respectively). Here the numerical calculation (based on the Bromwich integral) and the analytical result (based on $(1)$) are on the left and on the right respectively. As we can see there is a perfect match .
(*Run (*Procedure for finding zeros *) before running the below.*)
(*For the Bromwich integral to exist we must have: x> b. This is \
because BesselK[z] ~ Exp[-z]/Sqrt[z] as |z| --> Infinity and |arg[z]| \
< 3/2 Pi.*)
(Now we need to satisfy the condition (6a), i.e. the Laplace
transform below must vanish at x-->-Infinity. This is equivalent to
Cos[Pi (1-th)] >0 which is equivalent to Pi \in [1/2,3/2] - 2 Z.)
ths = Array[# &, 5, {6/10, 9/10}];
cols = Table[
ColorData["Rainbow", i/(Length[ths] - 1)], {i, 0, Length[ths] - 1}];
(mu0 = 1/2-nu(1-th);)
Clear[LT];
LT[alpha_, b_, th_] := (
x^(nu (1 - th))
BesselK[nu, (Sqrt[2] Sqrt[(alpha)] x^(1 - th))/(1 - th)])/(
b^(nu (1 - th))
BesselK[nu, (Sqrt[2] Sqrt[(alpha)] b^(1 - th))/(1 - th)]);
zs = Array[# &, 50, {1/2, 2}];
(Compute numerically.)
vals = Table[
NIntegrate[
Exp[I alpha #] LT[I alpha, b,
ths[[ii]]], {alpha, -Infinity, +Infinity}]/(2 Pi) & /@
zs, {ii, 1, Length[ths]}];
vals1 = Table[(x/b)^(nu (1 - ths[[ii]])) ( (1/Pi) NIntegrate[
2 beta Im[
BesselK[
nu, (Sqrt[2] x^(1 - ths[[ii]]))/(
1 - ths[[ii]]) (-I) beta]/
BesselK[
nu, (Sqrt[2] b^(1 - ths[[ii]]))/(
1 - ths[[ii]]) (-I) beta ]] Exp[-beta^2 #], {beta, 0,
Infinity}]) & /@ zs, {ii, 1, Length[ths]}];
str = ToString[{x, b, nu}];
b =.; pl1 =
ListPlot[Table[Transpose[{zs, vals[[ii]]}], {ii, 1, Length[ths]}],
PlotStyle :> cols,
AxesLabel :> {Subscript[[Tau], b],
Subscript[[Rho], Subscript[[Tau], b]]},
PlotLabel :> "Bromwich integral", ImageSize :> 400];
pl2 = ListPlot[
Table[Transpose[{zs, vals1[[ii]]}], {ii, 1, Length[ths]}],
PlotStyle :> cols,
AxesLabel :> {Subscript[[Tau], b],
Subscript[[Rho], Subscript[[Tau], b]]},
PlotLabel :> "Cauchy theorem", ImageSize :> 400];
GraphicsGrid[{{pl1, pl2}}, PlotLabel -> "x,b,[Nu]=" <> str]

Update:
Formula $(1)$ isn't really a solution to the problem because it still involves an improper integral. However, we are going to argue that if $\nu = 1/2 + {\mathbb N} $ a closed form expression can be obtained.
As an example let us take $\nu = 3/2$. Then the result reads as follows:
\begin{eqnarray}
&&\rho_{\tau_b}(t) = \frac{{\mathfrak A}(x,b) e^{-\frac{{\mathfrak A}(x,b)^2}{2 t}} }{\sqrt{2 \pi }
\sqrt{t}}
\cdot \\
&&
\left(
%
\frac{(\frac{x}{b})^{1-\theta}}{t} +
%
\right. \\
&& \left.
(1-\theta)^2 b^{2 \theta-2}
\left( -1
+
%
\sqrt{\frac{\pi }{2}}
\sqrt{t} (1-\theta )^1 b^{\theta -1} e^{\frac{\left(t (\theta -1) b^{\theta
}-b {\mathfrak A}(x,b)\right)^2}{2 b^2 t}}
\text{erfc}\left(\sqrt{\frac{\left(b {\mathfrak A}(x,b)+t (1-\theta )
b^{\theta }\right)^2}{2 b^2 t}}\right)
\right)
%
%
\right) \tag{2}
\end{eqnarray}
where ${\mathfrak A}(x,b):= (x^{1-\theta} - b^{1-\theta})/(1-\theta)$.
(*nu=3/2*)
{b} = RandomReal[{1/2, 4}, 1];
x = RandomReal[{2 b, 10}];
th = RandomReal[{1/2, 1}];
AA[x_, b_] := (x^(1 - th) - b^(1 - th))/(1 - th);
ts = Array[# &, 100, {1/10, 10}];
nu = 3/2;
vals0 = (x/b)^(nu (1 - th)) ( (1/Pi) NIntegrate[
2 beta Im[
BesselK[nu, (Sqrt[2] x^(1 - th))/(1 - th) (-I) beta]/
BesselK[nu, (Sqrt[2] b^(1 - th))/(
1 - th) (-I) beta ]] Exp[-beta^2 #], {beta, 0,
Infinity}]) & /@ ts;
vals0 = NIntegrate[(x/b)^((1 - th) nu) 1/
Pi (2 beta Im[
BesselK[nu, (Sqrt[2] x^(1 - th))/(1 - th) (-I) beta]/
BesselK[nu, (Sqrt[2] b^(1 - th))/(
1 - th) (-I) beta ]] Exp[-beta^2 #]), {beta, 0,
Infinity}] & /@ ts;
vals1 =
Exp[-(AA[x, b]^2/(2 #))] AA[x, b]/Sqrt[
2 [Pi] #] (b^(-2 + th) (-(1 - th)^2 b^th + (b x^(1 - th))/#) +
b^(-3 + 3 th) Sqrt[#] (1 - th)^3 Sqrt[[Pi]/2]
E^((b^th # (-1 + th) - b AA[x, b])^2/(2 b^2 #))
Erfc[(b^th # (1 - th) + b AA[x, b])/(b Sqrt[2 #])]) & /@ ts;
Abs[vals0/vals1 - 1] // Mean
b =.; ListPlot[Transpose[{ts, #}] & /@ {vals0, vals1},
PlotRange :> All, PlotStyle :> {{Purple, Diamond}, {Blue, Triangle}},
AxesLabel :> {Subscript[[Tau], b],
Subscript[[Rho], Subscript[[Tau], b]]}]

Now, by using the asymptotic expansion for the complementary error function it is easily shown that :
\begin{eqnarray}
\lim\limits_{t \rightarrow \infty}\rho_{\tau_b}(t) =
\frac{{\mathfrak A}(x,b) e^{-\frac{{\mathfrak A}(x,b)^2}{2 t}} }{\sqrt{2 \pi }
\sqrt{t}}
\cdot
\left(
\frac{b^{-2 \theta } x^{-2 \theta } \left(b^{\theta +1} x^{\theta +1}+x^2 b^{2 \theta }+b^2 x^{2 \theta
}\right)}{t^2 (\theta -1)^2} +
O(\frac{1}{t^3})
\right)
\end{eqnarray}
which implies that fractional moments exist if and only if the order of the moments is strictly smaller than three half, i.e. $E[ (\tau_b)^\zeta ] < \infty $ iff $ \zeta < 3/2 $.
Update 1:
Here we evaluate formula $(1)$ for $\nu = 1/2 + n$ where $n\in{\mathbb N}$.We define ${\tilde x}(\beta): = \sqrt{2} \frac{x^{1-\theta}}{1-\theta} \cdot \beta$ and ${\tilde b}(\beta): = \sqrt{2} \frac{b^{1-\theta}}{1-\theta} \cdot \beta$ and we have:
\begin{eqnarray}
\rho_{\tau_b}(t) &=&
\left( \frac{x}{b} \right)^{\nu(1-\theta)} \frac{1}{\pi}
\int\limits_0^\infty
Im\left[ \frac{K_\nu[ (-\imath){\tilde x}(\beta) ] }{K_\nu[ (-\imath) {\tilde b}(\beta)] } \right] \cdot 2 \beta e^{-\beta^2 t} d\beta \\
&=&
\left( \frac{x}{b} \right)^{\nu(1-\theta)} \frac{1}{\pi}
\int\limits_0^\infty
\frac{J_\nu({\tilde b}(\beta)) \cdot Y_\nu({\tilde x}(\beta)) - J_\nu({\tilde x}(\beta)) \cdot Y_\nu({\tilde b}(\beta))}{J_\nu({\tilde b}(\beta))^2 + Y_\nu({\tilde b}(\beta))^2 }
\cdot 2 \beta e^{-\beta^2 t} d\beta \\
&=&
\left( \frac{x}{b} \right)^{\nu(1-\theta)} \frac{Re}{\pi}
\int\limits_0^\infty
\left( \frac{{\tilde b}(\beta)}{{\tilde x}(\beta)} \right)^{n+\frac{1}{2}}
\cdot e^{\imath ({\tilde x}(\beta)-{\tilde b}(\beta))}
\cdot
\frac{
{\mathfrak F}_\nu({\tilde x}(\beta),{\tilde b}(\beta))
}
{
\sum\limits_{j=0}^n (n-j+1)^{(2 j)}
\frac{(2j-1)!!}{2^j j!} \cdot {\tilde b}(\beta)^{2(n-j)}
}
\cdot 2 \beta e^{-\beta^2 t} d\beta \\
&=&
\frac{Re}{\pi}
\int\limits_0^\infty
\frac{
{\mathfrak F}_\nu({\tilde x}(\beta),{\tilde b}(\beta))
}
{
\sum\limits_{j=0}^n (n-j+1)^{(2 j)}
\frac{(2j-1)!!}{2^j j!} \cdot {\tilde b}(\beta)^{2(n-j)}
}
\cdot 2 \beta e^{-\beta^2 t + \imath \sqrt{2} {\mathfrak A}(x,b) \cdot \beta} d\beta \\
&=&
e^{-\frac{{\mathfrak A}(x,b)^2}{2 t}}
\frac{2}{\pi}
Re
\int\limits_0^\infty
\frac{
{\mathfrak F}_\nu({\tilde x}(\beta),{\tilde b}(\beta))\cdot \beta
}
{
\sum\limits_{j=0}^n (n-j+1)^{(2 j)}
\frac{(2j-1)!!}{2^j j!} \cdot {\tilde b}(\beta)^{2(n-j)}
}
\cdot e^{-t \cdot\left( \beta - \frac{\imath {\mathfrak A}(x,b)}{\sqrt{2} t} \right)^2} d\beta \\
&=&
e^{-\frac{{\mathfrak A}(x,b)^2}{2 t}}
\frac{2}{\pi}
Re
\sum\limits_{j=0}^{n+1}
\frac{d^j_\beta }{j!} \left.[{\mathfrak F}_\nu({\tilde x}(\beta),{\tilde b}(\beta))\cdot \beta]\right|_{\beta \rightarrow 0} \cdot \\
&&
\sum\limits_{\xi=1}^{2 n}
\underbrace{
\frac{[\zeta_\xi^{(n)}]^j}{\prod\limits_{\eta=1,\xi \neq \eta }^{2 n} (\zeta_\xi^{(n)} - \zeta_\eta^{(n)})}
}_{{\mathfrak C}^{(n,j)}_\xi}
\cdot
\int\limits_0^\infty
\frac{e^{-t \cdot\left( \beta - \frac{\imath {\mathfrak A}(x,b)}{\sqrt{2} t} \right)^2}}{(\sqrt{2} \frac{b^{1-\theta}}{1-\theta} \cdot \beta - \zeta_\xi^{(n)})}
d\beta
\\
&=&
e^{-\frac{{\mathfrak A}(x,b)^2}{2 t}}
\frac{2}{\pi}
Re
\sum\limits_{j=0}^{n+1}
\frac{d^j_\beta }{j!} \left.[{\mathfrak F}_\nu({\tilde x}(\beta),{\tilde b}(\beta))\cdot \beta]\right|_{\beta \rightarrow 0} \cdot \\
&&
\sum\limits_{\xi=1}^{n}
{\mathfrak C}^{(n,j)}_\xi
\cdot
\underline{
\int\limits_0^\infty
e^{-t \cdot\left( \beta - \frac{\imath {\mathfrak A}(x,b)}{\sqrt{2} t} \right)^2}
\left[
\frac{1}{(\sqrt{2} \frac{b^{1-\theta}}{1-\theta} \cdot \beta - \zeta_\xi^{(n)})}
+
\frac{(-1)^{j+1}}{(\sqrt{2} \frac{b^{1-\theta}}{1-\theta} \cdot \beta - \bar{\zeta_\xi^{(n)}})}
\right] d\beta
}
\\
\end{eqnarray}
In the first line we substituted $\beta = \sqrt{\alpha}$ and in the second line we used the identity $K_\nu(-\imath x) = \pi/2 \imath^{1+\nu} (J_\nu(x) + \imath Y_\nu(x))$.
In the third line we evaluated the fraction in the integrand in a following way. The denominator was being obtained by using a corresponding identity from here and the numerator was being obtained by using the respective spherical Bessel function identities here and here.
Now the ${\mathfrak F}_\nu(\cdot,\cdot)$ function is a certain multinomial in its arguments and are defined as follows:
\begin{eqnarray}
{\mathfrak F}_\nu(x,b) := (-\imath)
\sum\limits_{l_1=0}^n
\sum\limits_{l_2=0}^n
{\mathcal B}^{(n)}_{l_1} {\mathcal B}^{(n)}_{l_2} \cdot
\frac{(-1)^{l_1+l_2}}{l_1! l_2!} b^{l_1} x^{l_2} \cdot e^{\imath \frac{\pi}{2} (l_2-l_1)}
\end{eqnarray}
where
${\mathcal B}^{(n)}_{l} := \sum\limits_{j_1=l}^n (2(n-j_1)+1)^{(j_1-1)} j_1 (2(n-j_1)-1)!!$.
In the forth line we simplified the result and defined ${\mathfrak A}(x,b) := (x^{1-\theta} - b^{1-\theta})/(1-\theta)$ and in the fifth line we completed the argument of the exponential to a square.
In the sixth line we decomposed a part of the integrand into partial fractions and integrated term by term. Here by$\left( \zeta_\xi^{(n)}\right)_{\xi=1}^{2 n}$ we denote the roots of a polynomial ${\mathbb C} \ni z \rightarrow \sum\limits_{j=0}^n (n-j+1)^{(2 j)}(2j-1)!!/(2^j j!)z^{2(n-j)} \in {\mathbb C} $. We have checked that for every $n\in {\mathbb N}$ those roots are not degenerate, i.e. all of them have a multiplicity one. We plot those roots below where the different colors correspond to different values of $n=0,\cdots,20$ (from violet to red respectively). We have:
b =.; num = 20;
(*Roots of the denominator.*)
cols = Table[ColorData["Rainbow", i/(num - 1)], {i, 0, num - 1}];
dens = Table[
Sum[ Pochhammer[n - j + 1, 2 j] (b)^(2 (n - j)) (2 j - 1)!!/(
2^j j!), {j, 0, n}], {n, 0, num}];
ListPlot[Transpose[{Re[#], Im[#]}] & /@ ((b /. NSolve[# == 0, b]) & /@
Drop[dens, 1]), PlotStyle -> cols, AxesLabel :> {"Re", "Im"},
PlotLabel :> "Zeros of BesselJ[n+1/2,z]^2+BesselY[n+1/2,z]^2"]

The final, seventh line, we used the identity ${\mathfrak C}^{(n,j)}_\xi + (-1)^j {\mathfrak C}^{(n,j)}_{2 n+1-\xi} = 0$ for $\xi=1,\cdots,n$ and $j=0,\cdots,2n+1$. Then we also used the fact that $\zeta^{(n)}_{2n+1-\xi} = \bar{\zeta^{(n)}_\xi}$, i.e. the $\xi$th and the $(2n+1-\xi)$th roots are complex conjugates.
Now the only thing that remains is to evaluate the improper integral, i,e, the term in the last line that is underlined. We refrain from writing it down explicitly in order not to obscure the whole picture but it is clear that that integral always exists; this follows form the fact that the roots are never purely real and negative; and the integral in question is expressed in terms of the error function the the hyperbolic cosine and sine integrals. This completes the derivation.
Below is a snippet of Mathematica code that verifies all the steps above, starting from the first line all the way down to the fifth. Here we go:
In[3523]:= (*The integrand*)
x =.; b =.; nu =.; Clear[f1]; Clear[f2]; Clear[FF];
f1[\[Nu]_, z_] :=
Sum[((-1)^
j (2 j + Abs[\[Nu]] + 1/2)!)/((2 j + 1)! (-2 j + Abs[\[Nu]] -
3/2)! (2 z)^(2 j + 1)), {j, 0,
Floor[(1/4) (2 Abs[\[Nu]] - 3)]}];
f2[\[Nu]_, z_] :=
Sum[((-1)^
j (2 j + Abs[\[Nu]] - 1/2)!)/((2 j + 0)! (-2 j + Abs[\[Nu]] -
1/2)! (2 z)^(2 j + 0)), {j, 0,
Floor[(1/4) (2 Abs[\[Nu]] - 1)]}];
(*For nu = 1/2 + n, with n being an integer, the function FF[] below \
is a multinomial in x and b of orders n,n respectively..*)
FF[nu_, x_,
b_] := (b x)^
n ((-f2[nu, x] f1[nu, b] + f1[nu, x] f2[nu, b]) -
I (+f1[nu, b] f1[nu, x] + f2[nu, b] f2[nu, x]));
num = 4;
myasmpts := 0 < b < x && Element[n, Integers] && n >= 0;
mint0 = Simplify[
ComplexExpand[
Table[With[{nu = 1/2 + n},
Im[BesselK[nu, -I x]/BesselK[nu, -I b]]], {n, 0, num}]],
Assumptions -> myasmpts];
mint = Table[
With[{nu = 1/2 + n}, (
BesselJ[nu, b] BesselY[nu, x] - BesselJ[nu, x] BesselY[nu, b])/(
BesselJ[nu, b]^2 + BesselY[nu, b]^2)], {n, 0, num}];
mint1 = Table[With[{nu = 1/2 + n},
(b/x)^(n + 1/2) (
(Exp[+I (x - b)]) FF[nu, x, b]
)/Sum[
Pochhammer[n - j + 1, 2 j] (b)^(2 (n - j)) (2 j - 1)!!/(
2^j j!), {j, 0, n}] ], {n, 0, num}];
mint1 = Simplify[ComplexExpand[Re[mint1]], Assumptions -> myasmpts];
(mint0 - mint) // PowerExpand // Simplify
(mint - mint1) // PowerExpand // Simplify
Out[3533]= {0, 0, 0, 0, 0}
Out[3534]= {0, 0, 0, 0, 0}