What is the inverse Laplace transform of $$ \bar{U}(r,s) = \frac{1}{s} \frac{K_0 \left(\sqrt{s/\alpha} \, r \right)}{K_0 \left(\sqrt{s/\alpha} \, b \right)} \tag{12}. $$ ?
Related (but not providing the answer):
- Inverse Laplace transform of $\frac{π\cosh(\sqrt s)}{2 s^{3/2} \sinh(\sqrt s)}$ using complex integration
- Inverse Laplace of $\frac{\sinh{x\sqrt{s}}}{s^2\sinh{\sqrt{s}}}$
- Inverse Laplace transform of $K_0 \left(r \sqrt{s^2-1}\right)$
- Inverse Laplace Transform of the modified Bessel function
- How do we use contour integration to invert a Laplace transform?
- Find the Green's Function and solution of a heat equation on the half line
- Solution of the transient heat equation for an infinite domain with a circular hole and angular symmetry
- https://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html