Related problems: (I), (II). It should be
$$\frac{1}{\cosh(z)} =\sum_{n=0}^\infty \frac{E_n}{n!}z^n,\quad|z|<\pi/2. $$ Here is few terms of Taylor series of $\frac{1}{\cosh(z)}$
$$ \frac{1}{\cosh(z)}= 1-{\frac {1}{2}}{z}^{2}+{\frac {5}{24}}{z}^{4}-{\frac {61}{720}}{z}^{
6}+O \left( {z}^{8} \right),$$
which they match your power series.
Added: Here is another representation. It may be of interest to some people
$$\frac{1}{\cosh(z)} =\sum _{n=0}^{\infty }{\frac {\left(
-1 \right)^{n}\left(\psi \left( 2\,n,\frac{3}{4}\right)-\psi \left( 2\,n,\frac{1}{4} \right) \right) {z}^{2\,n}}{ {4}^{n}{\pi }^{2\,n+1}\left( 2\,n \right) !}},$$
where $\psi(z)$ is the digamma function. Writing the OP's identity as
$$ \frac{1}{\cosh (z)}=\sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}z^{2n} ,$$
one can readily see the following relation
$$ E_{2n} = {\frac {\left(
-1 \right)^{n}\left(\psi \left( 2\,n,\frac{3}{4}\right)-\psi \left( 2\,n,\frac{1}{4} \right) \right) }{ {4}^{n}{\pi }^{2\,n+1}}}, \quad n\in \mathbb{N}\cup \{0\}. $$