Prove that: $${\rm{E}}_{2n}=(-1)^n(2n)!\left|{\begin{array}{ccccccc} \frac{1}{2!} & 1 & 0 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{4!} & \frac{1}{2!} & 1 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{6!} & \frac{1}{4!} & \frac{1}{2!} & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ \\ \frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \frac{1}{(2n-8)!} & \cdots & \frac{1}{2!} & 1\\\\ \frac{1}{(2n)!} &\frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \cdots & \frac{1}{4!} & \frac{1}{2!}\end{array}}\right|$$
where ${\rm E}_{2n}$ are the Euler numbers with even index. (given also http://en.wikipedia.org/wiki/Euler_number )
I started the problem using the fact that: $$\sec x =\sum_{n=0}^{\infty}\frac{(-1)^n {\rm E}_{2n}x^{2n}}{(2n)!}, \;\;\; \left | x \right |<\frac{\pi}{2}$$
Hence: $$\sec x \cdot \cos x =1 \implies \sum_{n=0}^{\infty}\frac{(-1)^n{\rm E}_{2n}x^{2n}}{\left ( 2n \right )!}\cdot \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}=1$$
Now I have to count , closely, in order to get what I want. Now I got stuck.. How can I proceed further? I cannot seem to combine the final result to get I want.
Thank you.
Equating coefficients I get that ${\rm E}0=1$ and $\displaystyle {\rm E}{2n}=-\sum_{k=0}^{n-1}\binom{2n}{2k}{\rm E}_{2k} $. How can I proceed to get that det?
– Tolaso Jan 10 '15 at 12:13