$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{n = 1}^{\infty}{H_{n} \over n^{3}} = {\pi^{4} \over 72}:\ {\large ?}}$
\begin{align}\color{#66f}{\large\sum_{n = 1}^{\infty}{H_{n} \over n^{3}}}
&=\sum_{n = 1}^{\infty}{1 \over n^{3}}\
\overbrace{\quad\sum_{k = 1}^{\infty}\pars{{1 \over k} - {1 \over k + n}}\quad}
^{\ds{=\ H_{n}}}\ =\
\sum_{n = 1}^{\infty}\sum_{k = 1}^{\infty}{1 \over n^{2}k\pars{k + n}}
\\[3mm]&=\half\sum_{n = 1}^{\infty}\sum_{k = 1}^{\infty}
\bracks{{1 \over n^{2}k\pars{k + n}} + {1 \over k^{2}n\pars{n + k}}}
=\half\sum_{n = 1}^{\infty}\sum_{k = 1}^{\infty}
{k + n \over n^{2}k^{2}\pars{k + n}}
\\[3mm]&=\half\sum_{n = 1}^{\infty}\sum_{k = 1}^{\infty}{1 \over n^{2}k^{2}}
=\half\pars{\sum_{n = 1}^{\infty}{1 \over n^{2}}}^{2}
=\half\pars{\pi^{2} \over 6}^{2}=\color{#66f}{\Large{\pi^{4} \over 72}}
\approx 1.3529
\end{align}