$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = 1}^{\infty}{H_{k} \over k^{4}} & =
\sum_{k = 1}^{\infty}H_{k}\
\overbrace{\bracks{-\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\,x^{k - 1}\,\dd x}}
^{\ds{1 \over k^{4}}}
\\[5mm] & =
-\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\
\overbrace{\sum_{k = 1}^{\infty}H_{k}\,x^{k}}
^{\ds{-\,{\ln\pars{1 - x} \over 1 - x}}}\ \,{\dd x \over x}
\\[5mm] & =
{1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x\pars{1 - x}}
\,\dd x
\\[5mm] & =
{1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x +
{1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over 1 - x}\,\dd x
\\[5mm] & =
{1 \over 6}\
\underbrace{\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x}
_{\ds{\mc{I}_{1}}}\ +\
{1 \over 6}\
\underbrace{\int_{0}^{1}{\ln^{3}\pars{1 - x}\ln\pars{x} \over x}\,\dd x}
_{\ds{\mc{I}_{2}}}
\\[5mm] & = {\mc{I}_{1} + \mc{I}_{2} \over 6}\label{1}\tag{1}
\end{align}
$\ds{\Large \mc{I}_{1} = ?}$.
\begin{align}
\mc{I}_{1} & =
-\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{3}\pars{x}\,\dd x =
3\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\ln^{2}\pars{x}\,\dd x =
-6\int_{0}^{1}\mrm{Li}_{4}'\pars{x}\ln\pars{x}\,\dd x
\\[5mm] & =
6\int_{0}^{1}\mrm{Li}_{5}'\pars{x}\,\dd x =
6\,\mrm{Li}_{5}\pars{1} \implies
\bbx{\large \mc{I}_{1} = 6\,\zeta\pars{5}}\label{2}\tag{2}
\end{align}
$\ds{\Large \mc{I}_{2} = ?}$.
\begin{align}
\mc{I}_{2} & =
\left.\partiald[3]{}{\mu}\partiald{}{\nu}
\int_{0}^{1}{\bracks{\pars{1 - x}^{\mu} - 1}x^{\nu} \over x}\,\dd x
\,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0}
\\[5mm] & =
\left.\partiald[3]{}{\mu}\partiald{}{\nu}
\int_{0}^{1}\bracks{\pars{1 - x}^{\mu}x^{\nu - 1} - x^{\nu - 1}}\dd x
\,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0}
\\[5mm] & =
\partiald[3]{}{\mu}\partiald{}{\nu}
\bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0}
\\[5mm] & =
\partiald[3]{}{\mu}\partiald{}{\nu}
\braces{{\Gamma\pars{\mu + 1}\bracks{\Gamma\pars{\nu + 1}/\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0}
\\[5mm] & =
\partiald[3]{}{\mu}\partiald{}{\nu}
\bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu + 1} -
\Gamma\pars{\mu + \nu + 1} \over
\nu\,\Gamma\pars{\mu + \nu + 1}}}_{\ \mu = 0\,,\ \nu\ =\ 0}
\end{align}
\begin{equation}
\mbox{This limit is a 'cumbersome task'. Its value is}\
\bbx{\large\mc{I}_{2} = 12\,\zeta\pars{5} - \pi^{2}\zeta\pars{3}}
\label{3}\tag{3}
\end{equation}
\eqref{1}, \eqref{2} and \eqref{3} lead to
$$
\bbx{\sum_{k = 1}^{\infty}{H_{k} \over k^{4}} =
3\,\zeta\pars{5} - {1 \over 6}\,\pi^{2}\,\zeta\pars{3}}
$$