$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{n = 1}^{\infty}{H_{n} \over n^{3}}\,x^{n} & =
\sum_{n = 1}^{\infty}H_{n}\,x^{n}\
\overbrace{\bracks{%
{1 \over 2}\int_{0}^{1}\ln^{2}\pars{t}t^{n - 1}\,\dd t}}^{\ds{1 \over n^{3}}}\ =\
{1 \over 2}\int_{0}^{1}\ln^{2}\pars{t}\sum_{n = 1}^{\infty}
H_{n}\pars{xt}^{n}\,{\dd t \over t}
\\[5mm] & =
-\,{1 \over 2}\int_{0}^{1}{\ln^{2}\pars{t}\ln\pars{1 - xt} \over
\pars{1 - xt}t}\,\dd t =
-\,{1 \over 2}\int_{0}^{x}{\ln^{2}\pars{t/x}\ln\pars{1 - t} \over
\pars{1 - t}t}\,\dd t
\\[1cm] & =
-{1 \over 2}\ln^{2}\pars{x}\
\overbrace{\int_{0}^{x}{\ln\pars{1 - t} \over
\pars{1 - t}t}\,\dd t}^{\ds{\mc{I}_{1}\pars{x}}}\ +\
\ln\pars{x}\
\overbrace{\int_{0}^{x}{\ln\pars{t}\ln\pars{1 - t} \over
\pars{1 - t}t}\,\dd t}^{\ds{\mc{I}_{2}\pars{x}}}
\\[2mm] &
-\,{1 \over 2}\
\underbrace{\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over
\pars{1 - t}t}\,\dd t}_{\ds{\mc{I}_{3}\pars{x}}}
\\[5mm] & =
\bbx{-\,{1 \over 2}\ln^{2}\pars{x}\mc{I}_{1}\pars{x} +
\ln\pars{x}\mc{I}_{2}\pars{x} - {1 \over 2}\mc{I}_{3}\pars{x}}
\label{0}\tag{0}
\end{align}
$\ds{\Large\mc{I}_{1}\pars{x} =\ ?}$.
\begin{align}
\mc{I}_{1}\pars{x} & \equiv
\int_{0}^{x}{\ln\pars{1 - t} \over \pars{1 - t}t}\,\dd t =
\int_{0}^{x}{\ln\pars{1 - t} \over 1 - t}\,\dd t +
\int_{0}^{x}{\ln\pars{1 - t} \over t}\,\dd t
\\[5mm] & =
\bbx{-\,{1 \over 2}\ln^{2}\pars{1 - x} - \mrm{Li}_{2}\pars{x}}
\label{1}\tag{1}
\end{align}
$\ds{\Large\mc{I}_{2}\pars{x} =\ ?}$.
\begin{align}
\mc{I}_{2}\pars{x} & \equiv
\int_{0}^{x}{\ln\pars{t}\ln\pars{1 - t} \over \pars{1 - t}t}\,\dd t =
\int_{0}^{x}{\ln\pars{t}\ln\pars{1 - t} \over 1 - t}\,\dd t +
\int_{0}^{x}{\ln\pars{1 - t} \over t}\ln\pars{t}\,\dd t
\\[5mm] & =
\int_{1}^{1 - x}{\ln\pars{1 - t} \over t}\ln\pars{t}\,\dd t +
\int_{0}^{x}{\ln\pars{1 - t} \over t}\ln\pars{t}\,\dd t
\end{align}
Since
$\ds{\int{\ln\pars{1 - t} \over t}\ln\pars{t}\,\dd t =
-\mrm{Li}_{2}\pars{t}\ln\pars{t} + \mrm{Li}_{3}\pars{t}}$ and
$\ds{\mrm{Li}_{3}\pars{1} = \zeta\pars{3}}$:
\begin{align}
\mc{I}_{2}\pars{x} & \equiv
\int_{0}^{x}{\ln\pars{t}\ln\pars{1 - t} \over \pars{1 - t}t}\,\dd t =
\bbx{-\mrm{Li}_{2}\pars{1 - x}\ln\pars{1 - x} + \mrm{Li}_{3}\pars{1 - x} - \zeta\pars{3}}\label{2}\tag{2}
\end{align}
$\ds{\Large\mc{I}_{3}\pars{x} =\ ?}$.
\begin{align}
\mc{I}_{3}\pars{x} & \equiv
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over \pars{1 - t}t}\,\dd t =
\bbox[10px,#eef]{\ds{%
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over t}\,\dd t}} +
\bbox[10px,#fee]{\ds{%
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over 1 - t}\,\dd t}}
\end{align}
The $\color{#00f}{\mbox{first integral}}$ is evaluated as follows:
\begin{align}
&\bbox[10px,#eef]{\ds{%
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over t}\,\dd t}} =
-\int_{0}^{x}\mrm{Li}_{2}'\pars{t}\ln^{2}\pars{t}\,\dd t
\\[5mm] = &\
-\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} + 2\int_{0}^{x}\mrm{Li}_{3}'\pars{t}\ln\pars{t}\,\dd t
\\[5mm] & =
-\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} +
2\,\mrm{Li}_{3}\pars{x}\ln\pars{x}
-2\int_{0}^{x}\mrm{Li}_{4}'\pars{t}\,\dd t
\\[5mm] & =
\bbox[10px,border:2px groove #00f]{-\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} + 2\,\mrm{Li}_{3}\pars{x}\ln\pars{x} -
2\,\mrm{Li}_{4}\pars{x}}
\label{3a}\tag{3a}
\end{align}
Hereafter, I'll evaluate the $\color{#f00}{\mbox{second integral}}$:
\begin{align}
&\bbox[10px,#fee]{\ds{%
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over 1 - t}\,\dd t}}
\\[5mm] = &\
-\,{1 \over 3}\int_{0}^{x}{-3\ln^{2}\pars{t}\ln\pars{1 - t} +
3\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t\ +\
\underbrace{\int_{0}^{x}{\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t}
_{\ds{\int_{1}^{1 - x}{\ln\pars{1 - t} \over t}\,\ln^{2}\pars{t}\,\dd t}}
\label{3b}\tag{3b}
\end{align}
The last integral evaluation is similar to \eqref{2}. Namely,
\begin{align}
\int_{0}^{x}{\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t & =
-2\,\mrm{Li}_{4}\pars{1 - x} -
\mrm{Li}_{2}\pars{1 - x}\ln^{2}\pars{1 - x}
\\[2mm] & +
2\,\mrm{Li}_{3}\pars{1 - x}\ln\pars{1 - x}\ + \
\underbrace{\qquad{\pi^{4} \over 45}\qquad}_{\ds{2\,\mrm{Li}_{4}\pars{1} =
2\,\zeta\pars{4}}}
\label{3c}\tag{3c}
\end{align}
Also,
\begin{align}
&\int_{0}^{x}{-3\ln^{2}\pars{t}\ln\pars{1 - t} +
3\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t
\\[5mm] = &\
\int_{0}^{x}{\ln^{3}\pars{t/\bracks{1 - t}} - \ln^{3}\pars{t} +
\ln^{3}\pars{1 - t} \over 1 - t}\,\dd t
\\[5mm] = &\
\int_{0}^{x}\ln^{3}\pars{t \over 1 - t}\,{\dd t \over 1 - t} -
\int_{0}^{x}{\ln^{3}\pars{t} \over 1 - t}\,\dd t +
\int_{0}^{x}{\ln^{3}\pars{1 - t} \over 1 - t}\,\dd t
\\[5mm] = &\
\int_{0}^{x}\ln^{3}\pars{t \over 1 - t}\,{\dd t \over 1 - t} +
\ln\pars{1 - x}\ln^{3}\pars{x} +
3\int_{0}^{x}\mrm{Li}_{2}'\pars{t}\ln^{2}\pars{t}\,\dd t -
{1 \over 4}\,\ln^{4}\pars{1 - x}
\end{align}
The second integral was already evaluated in \eqref{3a}. Namely,
$$
\int_{0}^{x}\mrm{Li}_{2}'\pars{t}\ln^{2}\pars{t}\,\dd t =
\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} - 2\,\mrm{Li}_{3}\pars{x}\ln\pars{x} +
2\,\mrm{Li}_{4}\pars{x}
$$
such that
\begin{align}
&\int_{0}^{x}{-3\ln^{2}\pars{t}\ln\pars{1 - t} +
3\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t
\\[5mm] = &\
\int_{0}^{x}\ln^{3}\pars{t \over 1 - t}\,{\dd t \over 1 - t} +
\ln\pars{1 - x}\ln^{3}\pars{x} +
3\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} -
6\,\mrm{Li}_{3}\pars{x}\ln\pars{x}
\\[2mm] &\
+ 6\,\mrm{Li}_{4}\pars{x} - {1 \over 4}\,\ln^{4}\pars{1 - x}
\label{3d}\tag{3d}
\end{align}
In the remaining integral I'll make the change $\ds{{t \over 1 - t} \mapsto t}$
such that
\begin{align}
&\int_{0}^{x}\ln^{3}\pars{t \over 1 - t}\,{\dd t \over 1 - t} =
-\int_{0}^{x/\pars{x - 1}}{\ln^{3}\pars{-t} \over 1 - t}\,\dd t
\\[5mm] = &\
\ln\pars{1 - {x \over x - 1}}\ln\pars{x \over 1 - x} +
3\int_{0}^{x/\pars{x - 1}}\mrm{Li}_{2}'\pars{t}\ln^{2}\pars{-t}\,\dd t
\\[5mm] = &\
-\ln\pars{1 - x}\ln\pars{x} + \ln^{2}\pars{1 - x} +
3\,\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}
\\[2mm] &\
-6\int_{0}^{x/\pars{x - 1}}\mrm{Li}_{3}'\pars{t}\ln\pars{-t}\,\dd t
\\[5mm] = &\
-\ln\pars{1 - x}\ln\pars{x} + \ln^{2}\pars{1 - x} +
3\,\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}
\\[2mm] &\
-6\,\mrm{Li}_{3}\pars{x \over x - 1}\ln\pars{x \over 1 - x} +
6\int_{0}^{x/\pars{x - 1}}\mrm{Li}_{4}'\pars{t}\,\dd t
\\[5mm] = &\
-\ln\pars{1 - x}\ln\pars{x} + \ln^{2}\pars{1 - x} +
3\,\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}
\\[2mm] &\
-6\,\mrm{Li}_{3}\pars{x \over x - 1}\ln\pars{x \over 1 - x} +
6\,\mrm{Li}_{4}\pars{x \over 1 - x}
\end{align}
By replacing this result in \eqref{3d}, I found
\begin{align}
&\int_{0}^{x}{-3\ln^{2}\pars{t}\ln\pars{1 - t} +
3\ln\pars{t}\ln^{2}\pars{1 - t}\over 1 - t}\,\dd t
\\[5mm] = &\
-\ln\pars{1 - x}\ln\pars{x} + \ln^{2}\pars{1 - x} +
3\,\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}
\\[2mm] &\
-6\,\mrm{Li}_{3}\pars{x \over x - 1}\ln\pars{x \over 1 - x} +
6\,\mrm{Li}_{4}\pars{x \over 1 - x}
+
\ln\pars{1 - x}\ln^{3}\pars{x} +
3\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x}
\\[2mm] &\
-6\,\mrm{Li}_{3}\pars{x}\ln\pars{x}
+ 6\,\mrm{Li}_{4}\pars{x} - {1 \over 4}\,\ln^{4}\pars{1 - x}
\end{align}
such that \eqref{3b} becomes
\begin{align}
&\bbox[10px,#fee]{\ds{%
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over 1 - t}\,\dd t}}
\\[5mm] = &\
{1 \over 3}\ln\pars{1 - x}\ln\pars{x} - {1 \over 3}\ln^{2}\pars{1 - x} -
\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}
\\[2mm] &\
+ 2\,\mrm{Li}_{3}\pars{x \over x - 1}\ln\pars{x \over 1 - x} -
2\,\mrm{Li}_{4}\pars{x \over 1 - x} -
{1 \over 3}\ln\pars{1 - x}\ln^{3}\pars{x} -
\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x}
\\[2mm] &\
+ 2\,\mrm{Li}_{3}\pars{x}\ln\pars{x}
- 2\,\mrm{Li}_{4}\pars{x} + {1 \over 12}\,\ln^{4}\pars{1 - x}
-2\,\mrm{Li}_{4}\pars{1 - x} -
\mrm{Li}_{2}\pars{1 - x}\ln^{2}\pars{1 - x}
\\[2mm] & +
2\,\mrm{Li}_{3}\pars{1 - x}\ln\pars{1 - x} + {\pi^{4} \over 45}
\label{3e}\tag{3e}
\end{align}
With \eqref{3a} and \eqref{3e}:
\begin{align}
\mc{I}_{3}\pars{x} & \equiv
\int_{0}^{x}{\ln^{2}\pars{t}\ln\pars{1 - t} \over \pars{1 - t}t}\,\dd t
\\[5mm] & =
\begin{array}{|l|}\hline \mbox{}\\
\ds{-2\,\mrm{Li}_{2}\pars{x}\ln^{2}\pars{x} + 4\,\mrm{Li}_{3}\pars{x}\ln\pars{x} -
4\,\mrm{Li}_{4}\pars{x}}
\\[2mm]
\ds{+ {1 \over 3}\ln\pars{1 - x}\ln\pars{x} - {1 \over 3}\ln^{2}\pars{1 - x} -
\mrm{Li}_{2}\pars{x \over x - 1}\ln^{2}\pars{x \over 1 - x}}
\\[2mm]
\ds{+ 2\,\mrm{Li}_{3}\pars{x \over x - 1}\ln\pars{x \over 1 - x} -
2\,\mrm{Li}_{4}\pars{x \over 1 - x} -
{1 \over 3}\ln\pars{1 - x}\ln^{3}\pars{x}}
\\[2mm]
\ds{+ {1 \over 12}\,\ln^{4}\pars{1 - x}
-2\,\mrm{Li}_{4}\pars{1 - x} -
\mrm{Li}_{2}\pars{1 - x}\ln^{2}\pars{1 - x}}
\\[2mm]
\ds{+ 2\,\mrm{Li}_{3}\pars{1 - x}\ln\pars{1 - x} + {\pi^{4} \over 45}}
\\ \mbox{}\\ \hline
\end{array}
\label{3}\tag{3}
\end{align}
The final result is given by \eqref{0}, \eqref{1}, \eqref{2} and
\eqref{3}.