28

How do we get a closed form for $$\sum_{n=1}^\infty\frac{H_n}{(2n+1)^2}$$

Ryan
  • 3,945
  • no idea. Why do you think there is one? – Will Jagy Feb 26 '13 at 03:34
  • 2
    Mathematica says the answer is $\frac{1}{4} (-\pi^2 \ln{2} + 7 \zeta(3))$ which probably suggests it knows a way how to reduce it to known series. One attempt may be at trying to go backwards from Mathematica's answer and see if you can rediscover what it did. – muzzlator Feb 26 '13 at 03:40
  • 2
    It would have been better to put that information into the question, both for motivation and to help others with their thoughts. So post it as "Mathematica says $\sum_{n=1}^\infty\frac{H_n}{(2n+1)^2}=\frac{1}{4} (-\pi^2 \ln{2} + 7 \zeta(3))$. Is there an easy to demonstrate this?" If you have information on why you were motivated to ask Mathematica, that might be useful, too. – Ross Millikan Feb 26 '13 at 03:44
  • @Ross: In the comments that are currently visible, it wasn't the OP who mentioned the Mathematica result; your comment seems to assume that. – joriki Feb 26 '13 at 04:04
  • @WillJagy, Because I was doing a integral, the last part is this tough series :( – Ryan Feb 26 '13 at 04:11
  • 1
    Some similar series are on this guy's blog, the same guy's blog, and this other guy's blog, but they omit the identity you're after. – Aeolian Feb 26 '13 at 04:25
  • 1
    @joriki: you are right. Then OP came back with some motivation. There is progress. – Ross Millikan Feb 26 '13 at 04:35
  • Note that the factor $1/4$ in the result comes out naturally if you write the sum as

    $$ \frac14\sum_{n=1}^\infty\frac{H_n}{(n+\frac12)^2};, $$

    which may or may not make it more conducive to the approach taken in the first blog post Aeolian linked to above.

    – joriki Feb 26 '13 at 07:53

6 Answers6

19

Here's another solution. I'll denote various versions of the sum

$$ \sum_{k=1}^\infty\sum_{j=1}^k\frac1j\frac1{k^2} $$

by an $S$ with two subscripts indicating which parities are included, the first subscript referring to the parity of $j$ and the second to the parity of $k$, with '$\mathrm e$' denoting only the even terms, '$\mathrm o$' denoting only the odd terms, '$+$' denoting the sum of the even and odd terms, i.e. the regular sum, and '$-$' denoting the difference between the even and the odd terms, i.e. the alternating sum. Then

$$ \begin{align} \sum_{n=1}^\infty\frac{H_n}{(2n+1)^2} &= 2\sum_{n=1}^\infty\sum_{i=1}^n\frac1{2i}\frac1{(2n+1)^2} \\ &= 2S_{\mathrm{eo}} \\ &= 2(S_{++}-S_{\mathrm o+}-S_{\mathrm{ee}}) \\ &= 2\left(S_{++}-S_{\mathrm o+}-\frac18S_{++}\right) \\ &= 2\left(\frac38S_{++}+\left(\frac12S_{++}-S_{\mathrm o+}\right)\right) \\ &= \frac34S_{++}+S_{-+} \\ &= \frac32\zeta(3)+\sum_{k=1}^\infty\sum_{j=1}^k\frac{(-1)^j}j\frac1{k^2}\;, \end{align} $$

where I used the result $\sum_nH_n/n^2=2\zeta(3)$ from the blog post Aeolian linked to and reduced the present problem to finding the analogue of that result with the sign alternating with $j$, which we can rewrite as

$$ \begin{align} \sum_{k=1}^\infty\sum_{j=1}^k\frac{(-1)^j}j\frac1{k^2} &= \sum_{k=1}^\infty\sum_{j=1}^\infty\frac{(-1)^j}j\frac1{k^2}-\sum_{k=1}^\infty\sum_{j=k+1}^\infty\frac{(-1)^j}j\frac1{k^2} \\ &= -\zeta(2)\log2+\sum_{j=1}^\infty\frac{(-1)^j}{j+1}\sum_{k=1}^j\frac1{k^2}\;. \end{align} $$

This last double sum can be evaluated by the method applied in the blog post, making use of the fact that summing the coefficients of a power series in $x$ corresponds to dividing it by $1-x$:

$$ \begin{align} \sum_{j=1}^\infty x^j\sum_{k=1}^j\frac1{k^2}=\def\Li{\operatorname{Li}}\frac{\Li_2(x)}{1-x}\;, \end{align} $$

where $\Li_2$ is the dilogarithm. Thus

$$ \begin{align} \sum_{j=1}^\infty\frac{(-1)^j}{j+1}\sum_{k=1}^j\frac1{k^2} &= \int_0^1\sum_{j=1}^\infty (-x)^j\sum_{k=1}^j\frac1{k^2}\mathrm dx \\ &= \int_0^1\frac{\Li_2(-x)}{1+x}\mathrm dx \\ &= \left[\Li_2(-x)\log(1+x)\right]_0^1+\int_0^1\frac{\log^2(1+x)}x\mathrm dx \\ &=-\frac{\zeta(2)}2\log2+\frac{\zeta(3)}4\;, \end{align} $$

where the boundary term is evaluated using $\Li_2(-1)=-\eta(2)=-\zeta(2)+2\zeta(2)/4=-\zeta(2)/2$ and the integral in the second term is evaluated in this separate question. Putting it all together, we have

$$ \begin{align} \sum_{n=1}^\infty\frac{H_n}{(2n+1)^2} &= \frac74\zeta(3)-\frac32\zeta(2)\log2 \\ &= \frac74\zeta(3)-\frac{\pi^2}4\log2\;. \end{align} $$

I believe all the rearrangements can be justified, despite the series being only conditionally convergent in $j$, by considering the partial sums with $j$ and $k$ both going up to $M$; then all the rearrangements can be carried out within that finite square of the grid, and the sums of the remaining terms go to zero with $M\to\infty$.

joriki
  • 238,052
14

I gave an integral representation for a more general form. Here is an integral representation for your sum

$$\sum_{n=1}^\infty\frac{H_n}{(2n+1)^2}= \frac{1}{4}\,\int_{0}^{1}\!{\frac {\ln \left( 1-z \right) \ln \left( z\right) }{z\sqrt {1-z}}}{dz}= \frac{1}{4}(7\,\zeta \left( 3 \right) -{\pi }^{2}\ln \left( 2 \right))\sim 0.393327464. $$

The above integral can be evaluated through beta function. Here is the technique from previous problems. Basically, you need to consider the integral

$$ \int_{0}^{1} z^s (1-z)^{w-1/2} dz. $$

science
  • 2,900
9

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{n = 1}^{\infty}{H_{n} \over \pars{2n + 1}^{2}}:\ {\large ?}}$.

Lets consider $\ds{\fermi\pars{x}\equiv \sum_{n = 1}^{\infty}{H_{n} \over \pars{2n + 1}^{2}}\,x^{2n + 1}. \qquad\fermi\pars{1}={\large ?}\,,\quad \fermi\pars{0} = 0}$.

\begin{align} \fermi'\pars{x}&=\sum_{n = 1}^{\infty}{H_{n} \over 2n + 1}\,x^{2n} \ \imp\ \bracks{x\fermi'\pars{x}}'=\sum_{n = 1}^{\infty}H_{n}\,x^{2n} =-\,{\ln\pars{1 - x^{2}} \over 1 - x^{2}}\,,\qquad\fermi'\pars{0} = 0 \end{align} where we used the Harmonic Number Generating Function.

Then \begin{align} &x\fermi'\pars{x}=-\int_{0}^{x}{\ln\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t \\[3mm]&\imp \fermi\pars{1}=-\int_{0}^{1}{\dd x \over x}\int_{0}^{x} {\ln\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t =-\int_{0}^{1}{\ln\pars{1 - t^{2}} \over 1 - t^{2}}\int_{t}^{1}{\dd x \over x} \,\dd t \end{align}

$$\begin{array}{|c|}\hline\\ \quad\sum_{n = 1}^{\infty}{H_{n} \over \pars{2n + 1}^{2}} =\int_{0}^{1}{\ln\pars{t}\ln\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t\quad \\ \\ \hline \end{array} $$

\begin{align} &\color{#c00000}{\sum_{n = 1}^{\infty}{H_{n} \over \pars{2n + 1}^{2}}} =\int_{0}^{1}{\ln\pars{t^{1/2}}\ln\pars{1 - t} \over 1 - t}\,\half\,t^{-1/2} \,\dd t ={1 \over 4}\int_{0}^{1}{t^{-1/2}\ln\pars{t}\ln\pars{1 - t} \over 1 - t}\,\dd t \\[3mm]&={1 \over 4}\lim_{\mu\ \to\ 0 \atop{\vphantom{\LARGE A}\nu\ \to\ 0}} \partiald{}{\mu}\partiald{}{\nu}\int_{0}^{1}t^{\mu - 1/2} \pars{1 - t}^{\nu - 1}\,\dd t ={1 \over 4}\lim_{\mu\ \to\ 0 \atop{\vphantom{\LARGE A}\nu\ \to\ 0}} \partiald{}{\nu}\Gamma\pars{\nu}\partiald{}{\mu} \bracks{\Gamma\pars{\mu + 1/2} \over \Gamma\pars{\mu + \nu + 1/2}} \\[3mm]&={1 \over 4}\lim_{\nu\ \to\ 0} \partiald{}{\nu}\braces{% \Gamma\pars{\nu}\,{\Gamma\pars{1/2} \over \Gamma\pars{\nu + 1/2}} \bracks{\Psi\pars{\half} - \Psi\pars{\nu + \half}}} \\[3mm]&=-\,{1 \over 4}\,\Gamma\pars{\half}\lim_{\nu\ \to\ 0} \partiald{}{\nu}\bracks{% {\Gamma\pars{\nu + 1} \over \Gamma\pars{\nu + 1/2}}\, {\Psi\pars{1/2 + \nu} - \Psi\pars{1/2} \over \nu}} \\[3mm]&=-\,{1 \over 4}\,\Gamma\pars{\half}\lim_{\nu\ \to\ 0} \partiald{}{\nu}\braces{% {\Gamma\pars{\nu + 1} \over \Gamma\pars{\nu + 1/2}}\, \bracks{\Psi'\pars{\half} + \half\,\Psi''\pars{\half}\nu}} \\[3mm]&={\pi^{2}\gamma + \pi^{2}\Psi\pars{1/2} + 14\zeta\pars{3} \over 8} \quad\mbox{where we used}\quad\Psi\pars{1} = -\gamma\,,\quad \Psi''\pars{\half} = -14\zeta\pars{3}. \end{align}

With $\ds{\Psi\pars{\half} = -2\ln\pars{2} - \gamma}$: $$ \color{#66f}{\large\sum_{n = 1}^{\infty}{H_{n} \over \pars{2n + 1}^{2}} ={1 \over 4}\,\bracks{7\zeta\pars{3} - \pi^{2}\ln\pars{2}}} \approx {\tt 0.3933} $$

Felix Marin
  • 89,464
4

$$\displaystyle I=\int_0^1 \dfrac{\ln x\ln(1-x^2)}{1-x^2}dx$$

Define the function $R$ on $[0;1]$,

$$R(x)=\int_0^x\dfrac{\ln t}{1-t^2}dt=\int_0^1\dfrac{x\ln(tx)}{1-t^2x^2}dt$$

Let $\epsilon$, real, such that $0<\epsilon<1$.

\begin{align} J(\epsilon)&=\Big[\left(R(x)-R(1)\right)\ln(1-x^2)\Big]_0^{1-\epsilon}+\int_0^{1-\epsilon} \dfrac{2x\left(R(x)-R(1)\right)}{1-x^2}dx\\ &=\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)+R(1)\ln\left(1-(1-\epsilon)^2\right)+\int_0^{1-\epsilon} \dfrac{2xR(x)}{1-x^2}dx\\ &=\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)+R(1)\ln\left(1-(1-\epsilon)^2\right)+\\ &\int_0^{1-\epsilon}\left(\int_0^1\dfrac{2x^2\ln(tx)}{(1-x^2)(1-t^2x^2)}dt\right)dx\\ &=\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)+R(1)\ln\left(1-(1-\epsilon)^2\right)+\\ &\int_0^{1-\epsilon}\left(\int_0^1\dfrac{2x^2\ln x}{(1-x^2)(1-t^2x^2)}dt\right)dx+\int_0^1\left(\int_0^{1-\epsilon}\dfrac{2x^2\ln t}{(1-x^2)(1-t^2x^2)}dx\right)dt\\ &=\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)+R(1)\ln\left(1-(1-\epsilon)^2\right)+\\ &\displaystyle\int_0^{1-\epsilon}\left[\dfrac{x\ln x\ln\left(\tfrac{1+tx}{1-tx}\right)}{1-x^2}\right]_{t=0}^{t=1}dx+\int_0^1 \left[\dfrac{\ln t\ln\left(\tfrac{1-x}{1+x}\right)}{t^2-1}+\dfrac{\ln t\ln\left(\tfrac{1-tx}{1+tx}\right)}{t}-\dfrac{t\ln t\ln\left(\tfrac{1+tx}{1-tx}\right)}{1-t^2}\right]_{x=0}^{x=1-\epsilon}dt\\ &=\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)+R(1)\ln\left(1-(1-\epsilon)^2\right)+\\ &\displaystyle\int_0^{1-\epsilon}\dfrac{x\ln x\ln\left(\tfrac{1+x}{1-x}\right)}{1-x^2}dx-\ln\left(\dfrac{\epsilon}{2+\epsilon}\right)R(1)+\int_0^1\dfrac{\ln t\ln\left(\tfrac{1-t(1-\epsilon)}{1+t(1-\epsilon)}\right)}{t}dt-\\ &\int_0^1\dfrac{t\ln t\ln\left(\tfrac{1+t(1-\epsilon)}{1-t(1-\epsilon)}\right)}{1-t^2}dt \end{align}

Since,

$$\lim_{\epsilon\rightarrow 0}\left(R(1-\epsilon)-R(1)\right)\ln(1-(1-\epsilon)^2)=0$$

and,

$$\lim_{\epsilon\rightarrow 0}R(1)\ln\left(\tfrac{1-(1-\epsilon)^2}{\epsilon}\right)=R(1)\ln 2$$

then,

$$\boxed{\lim_{\epsilon\rightarrow 0}J(\epsilon)=2R(1)\ln 2+\int_0^1\dfrac{\ln t\ln\left(\tfrac{1-t}{1+t}\right)}{t}dt}$$

and then,

\begin{align} \int_0^1\dfrac{\ln t\ln\left(\tfrac{1-t}{1+t}\right)}{t}dt&=\int_0^1\dfrac{\ln t\left(\ln(1-t)-\ln(1+t)\right)}{t}dt\\ &=-2\int_0^1\left(\sum_{n=0}^{\infty}\dfrac{t^{2n}}{2n+1}\right)\ln tdt\\ &=-2\sum_{n=0}^{\infty}\left(\dfrac{1}{2n+1}\int_0^1 t^{2n}\ln tdt\right)\\ &=2\sum_{n=0}^{\infty}\dfrac{1}{(2n+1)^3}\\ &=2\left(\sum_{n=1}^{\infty}\dfrac{1}{n^3}-\sum_{n=1}^{\infty}\dfrac{1}{(2n)^3}\right)\\ &=2\left(\zeta(3)-\dfrac{1}{8}\zeta(2)\right)\\ &=\dfrac{7}{4}\zeta(3)\\ \end{align}

and,

\begin{align} \displaystyle R(1)&=\int_0^1\dfrac{\ln x}{1-x^2}dx\\ &=\int_0^1 \left(\sum_{n=0}^{\infty}x^{2n}\right)\ln xdx\\ &=\sum_{n=0}^{\infty}\left(\int_0^1 x^{2n}\ln x dx\right)\\ &=-\sum_{n=0}^{\infty}\dfrac{1}{(2n+1)^2}\\ &=\sum_{n=1}^{\infty}\dfrac{1}{(2n)^2}-\sum_{n=0}^{\infty}\dfrac{1}{n^2}\\ &=\dfrac{1}{4}\zeta(2)-\zeta(2)\\ &=-\dfrac{3}{4}\zeta(2)\\ &=-\dfrac{\pi^2}{8} \end{align}

Therefore,

$$\boxed{I=\dfrac{7}{4}\zeta(3)--\dfrac{1}{4}\pi^2\ln 2}$$

FDP
  • 13,647
2

The following new solution is proposed by Cornel Ioan Valean. Let's prove the more general case \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^{2m}}=2m\left(1-\frac{1}{2^{2m+1}}\right)\zeta(2m+1)-2\log(2)\left(1-\frac{1}{2^{2m}}\right)\zeta(2m) \end{equation*} \begin{equation*} -\frac{1}{2^{2m}}\sum_{i=1}^{m-1}(1-2^{i+1})(1-2^{2m-i})\zeta(1+i)\zeta(2m-i). \end{equation*} Proof. Using an application of The Master Theorem of Series presented in the article A master theorem of series and an evaluation of a cubic harmonic series and in the new released book, (Almost) Impossible Integrals, Sums, and Series, $\displaystyle \sum_{k=1}^{\infty} \frac{H_k}{(k+1)(k+n+1)}=\frac{(\gamma+\psi(n+1))^2+\zeta(2)-\psi^{(1)}(n+1)}{2n}$, multiplying both sides by $n$ and differentiating both sides with respect to $n$, $(2m-1)$th times, we get \begin{equation*} \sum _{k=1}^{\infty}\frac{H_k}{(2k+1)^{2m}}=\frac{1}{(2m-1)!2^{2m+1}}\lim_{n\to-1/2}\frac{\partial^{2m-1}}{\partial n^{2m-1}}\left((\gamma+\psi(n+1))^2+\zeta(2)-\psi^{(1)}(n+1)\right) \end{equation*} \begin{equation*} =\frac{1}{(2m-1)!2^{2m+1}}\biggr(2\psi^{(2m-1)}\left(\frac{1}{2}\right)\left(\gamma+\psi\left(\frac{1}{2}\right)\right)+2\sum_{i=1}^{m-1}\binom{2m-1}{i}\psi^{(2m-i-1)}\left(\frac{1}{2}\right)\psi^{(i)}\left(\frac{1}{2}\right) \end{equation*} \begin{equation*} -\psi^{(2m)}\left(\frac{1}{2}\right)\biggr) \end{equation*} \begin{equation*} =2m\left(1-\frac{1}{2^{2m+1}}\right)\zeta(2m+1)-2\log(2)\left(1-\frac{1}{2^{2m}}\right)\zeta(2m) \end{equation*} \begin{equation*} -\frac{1}{2^{2m}}\sum_{i=1}^{m-1}(1-2^{i+1})(1-2^{2m-i})\zeta(1+i)\zeta(2m-i), \end{equation*} where in the calculations we also needed the known results, $\displaystyle \psi\left(\frac{1}{2}\right)=-\gamma-2\log(2)$ and $\displaystyle \psi^{(k)}\left(\frac{1}{2}\right)=(-1)^{k-1}k!(2^{k+1}-1)\zeta(k+1)$.

A few cases of the generalization:

For $m=1$, \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^2}=\frac{7}{4}\zeta(3)-\frac{3}{2}\log(2)\zeta(2); \end{equation*} For $m=2$, \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^4}=\frac{31}{8}\zeta(5)-\frac{21}{16}\zeta(2)\zeta(3)-\frac{15}{8}\log(2)\zeta(4); \end{equation*} For $m=3$, \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^6}=\frac{381}{64}\zeta(7)-\frac{93}{64}\zeta(2)\zeta(5)-\frac{105}{64}\zeta(3)\zeta(4)-\frac{63}{32}\log(2)\zeta(6); \end{equation*} For $m=4$, \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^8}=\frac{511}{64}\zeta(9)-\frac{381}{256}\zeta(2)\zeta(7)-\frac{441}{256}\zeta(3)\zeta(6)-\frac{465}{256}\zeta(4)\zeta(5)-\frac{255}{128}\log(2)\zeta(8); \end{equation*} For $m=5$, \begin{equation*} \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^{10}}=\frac{10235}{1024}\zeta(11)-\frac{1533}{1024}\zeta(2)\zeta(9)-\frac{1785}{1024}\zeta(3)\zeta(8)-\frac{1905}{1024}\zeta(4)\zeta(7) \end{equation*} \begin{equation*} -\frac{1953}{1024}\zeta(5)\zeta(6)-\frac{1023}{512}\log(2)\zeta(10). \end{equation*}

The other case, $\displaystyle \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^{2m-1}}$, may be treated in a similar style. Using the parity of $p$ in $\displaystyle \sum _{n=1}^{\infty}\frac{H_n}{(2n+1)^p}, p\ge2$, allows you to put the closed-forms of the generalizations in more elegant ways.

user97357329
  • 5,319
  • Why get one when you can get them all! Powerful and elegant. Thanks. – omegadot Jul 10 '19 at 12:49
  • @omegadot My pleasure. :) Welcome. – user97357329 Jul 12 '19 at 15:56
  • 1
    For completeness @user97357329 would it be possible for you to add the explicit expression for the other case (when the power in the denominator is odd)? And do you know if the two cases combine nicely into a simple (manageable) expression? – omegadot Jan 25 '20 at 05:07
  • Hi there. Yes, I'll do it when I have more time. Also in this paper https://arxiv.org/abs/1301.7662 odd and even cases are considered separately. I'll check all details at a later time. – user97357329 Jan 25 '20 at 18:46
1

using the following identity proved by Random Variable here $$S= \sum_{n=1}^{\infty} \frac{H_{n}}{ (n+a)^{2}}= \left(\gamma + \psi(a) \right) \psi_{1}(a) - \frac{\psi_{2}(a)}{2} \, , \quad a >0.$$

take $\ a=1/2$ $$S= \sum_{n=1}^{\infty} \frac{H_{n}}{ (2n+1)^{2}}=\frac74\zeta(3)-\frac32\ln2\zeta(2)$$

a similar identity was proved here by the mathematician Anthony Sofo, when he published some related work in 2011.

Ali Shadhar
  • 25,498