$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{{1 \over 2}\int_{0}^{1}{\ln\pars{y}\ln^{2}\pars{1 - y} \over y}\,\dd y =
-\,{\pi^{4} \over 360}:\
{\large ?}}$.
\begin{align}
&\bbox[10px,#ffd]{\ds{{1 \over 2}\int_{0}^{1}{\ln\pars{y}\ln^{2}\pars{1 - y} \over y}\,\dd y}} =
\left.{1 \over 2}\,{\partial^{3} \over \partial\nu^{2}\partial\mu}\int_{0}^{1}{y^{\mu}\bracks{\pars{1 - y}^{\nu} - 1} \over y}\,\dd y\,\right\vert_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}
\\[5mm] = &\
{1 \over 2}\,{\partial^{3} \over \partial\nu^{2}\partial\mu}
\bracks{{\Gamma\pars{\mu}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \mu}}_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}\quad
\pars{~\Gamma:\ Gamma\ Function~}
\\[5mm] = &\
{1 \over 2}\,{\partial^{3} \over \partial\nu^{2}\partial\mu}
\bracks{{\pi \over \Gamma\pars{1 - \mu}\sin\pars{\pi\mu}}\,{\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \mu}}_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}
\\[5mm] = &\
{1 \over 2}\,{\partial^{3} \over \partial\nu^{2}\partial\mu}
\bracks{{1 \over \mu}\,{\Gamma\pars{\nu + 1} \over \Gamma\pars{1 - \mu}\Gamma\pars{\mu + \nu + 1}} + {\pi^{2} \over 6}\,\mu}
_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}
\\[5mm] = &\
{1 \over 2}\,{\partial^{3} \over \partial\nu^{2}\partial\mu}
\bracks{\left.{1 \over 2}\,\partiald[2]{}{x}{\Gamma\pars{\nu + 1} \over \Gamma\pars{1 - x}\Gamma\pars{x + \nu + 1}}\,\right\vert_{\ x\ =\ 0^{+}}\mu + {\pi^{2} \over 6}\,\mu}_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}
\\[5mm] = &\
{1 \over 2}\,{\partial^{2} \over \partial\nu^{2}}
\bracks{\left.{1 \over 2}\,\partiald[2]{}{x}{\Gamma\pars{\nu + 1} \over \Gamma\pars{1 - x}
\Gamma\pars{x + \nu + 1}}\,\right\vert_{\ x\ =\ 0^{+}} + {\pi^{2} \over 6}}
_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}} =
{1 \over 4}\,{\partial^{4} \over \partial\nu^{2}\partial\mu^{2}}
{\nu \choose \mu + \nu}_{\ {\large\mu\ =\ 0^{+}} \atop {\large\nu\ =\ 0}}
\\[5mm] = &\
{1 \over 4}\,\partiald[2]{}{\nu}
\bracks{-\,{\pi^{2} \over 6} + H^{2}_{\nu} - \Psi\, '\pars{1 + \nu}}
_{\ \nu\ =\ 0}\quad
\pars{~H_{z}:\ Harmonic\ Number~}
\\[5mm] = &\
{1 \over 4}\bracks{2\Psi\, '^{2}\pars{1} + 2H_{0}\,\Psi\,''\pars{1}- \Psi\, '''\pars{1}}
\qquad\qquad\qquad\qquad
\left\{\begin{array}{lcr}
\ds{\Psi\, '\pars{1}} & \ds{=} & \ds{\pi^{2} \over 6}
\\
\ds{\Psi\, '''\pars{1}} & \ds{=} & \ds{\pi^{4} \over 15}
\\
\ds{H_{0}} & \ds{=} & \ds{0}
\end{array}\right.
\\[5mm] = &\
{1 \over 4}\bracks{2\pars{\pi^{2} \over 6}^{2} + 0 - {\pi^{4} \over 15}} =
\bbx{-\,{\pi^{4} \over 360}}
\end{align}