The value of logsine integrals $$\int_0^\frac{\pi}4 \log^k(\sin(\theta))d\theta, \ \ \int_0^\frac{\pi}4 \log^k(\cos(\theta))d\theta$$ Where $k=1,2$ are well known. Moreover, this answer by nospoon provides (essentially through the nice structure of the Fourier series of $\log\left(2\left|\sin\frac{x}{2}\right|\right)$) two closed forms for quite non-elementary integrals:
\begin{eqnarray*} \int_{0}^{\pi/4} \log^3(\sin\theta)\,d\theta &=& 3\,\text{Im}\,\text{Li}_4(1-i)-\frac{25\pi^3}{256}\log(2)+\frac{3}{2}\log(2)\,\text{Im}\,\text{Li}_3\left(\tfrac{1+i}{2}\right)\\ && -\frac{3K}{8}\log^2(2)-\frac{17\pi}{64}\log^3(2)-\frac{3\pi}{8}\zeta(3)+\frac{3}{4}\beta(4)\tag{1} \end{eqnarray*} and by differentiating the Euler Beta function $\int_0^\frac{\pi}2 \sin^a(\theta)d\theta$ three times, the logsine integral $\int_0^\frac{\pi}2 \log^3(\sin(\theta))d\theta$ is trivially evaluated, from which and reflection $\theta\to \frac{\pi}2-\theta$ the result below follows: \begin{eqnarray}\label{intlog3}\notag \int_{0}^{\pi/4} \log^3(\cos\theta)\,d\theta &=& -\frac{7\pi^3}{256}\log(2)-\frac{15\pi}{64}\log^3(2)+\frac{3K}{8}\log^2(2)-\frac{3\pi}{8}\zeta(3)\\ && -\frac{3}{4}\beta(4)-\frac{3}{2}\log(2)\,\text{Im}\,\text{Li}_3\left(\tfrac{1+i}{2}\right)-3\,\text{Im}\,\text{Li}_4(1-i).\tag{2} \end{eqnarray}
Q: I am interested in a closed form evaluation (in terms of Euler sums) for the integrals $$\color{blue}{ \int_{0}^{\pi/4}\log^4(\sin\theta)\,d\theta,\qquad \int_{0}^{\pi/4}\log^4(\cos\theta)\,d\theta }$$ whose sum is clearly given by $\frac{19\pi^5}{480}+\frac{\pi^3}{4}\log^2(2)+\frac{\pi}{2}\log^4(2)+3\pi\zeta(3)\log(2)$ thanks to Euler's Beta function again. Are their value already known in the literature? If so, does the evaluation procedure exploit the convolution identity $$ \log^2\left(2\sin\frac{x}{2}\right)\stackrel{L^2(0,\pi)}{=}\frac{\pi^2}{12}+\sum_{n\geq 1}\cos(nx)\frac{H_n+H_{n-1}}{n}\quad?\tag{3} $$