The OP gives the evaluation
$$S=\frac{\pi^{3/2}}{3}-\sqrt{\pi}-\frac{\sqrt{\pi}}{324}\left[9\,_3F_2\left(\begin{array}{c}\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2}\\\tfrac{5}{2},\tfrac{5}{2}\end{array}\middle|\tfrac{1}{4}\right)\\+3\,_4F_3\left(\begin{array}{c}\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2}\\\tfrac{5}{2},\tfrac{5}{2},\tfrac{5}{2}\end{array}\middle|\tfrac{1}{4}\right)+\,_5F_4\left(\begin{array}{c}\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2}\\\tfrac{5}{2},\tfrac{5}{2},\tfrac{5}{2},\tfrac{5}{2}\end{array}\middle|\tfrac{1}{4}\right)\right]$$
We can simplify this further. Since $\small{\,_2F_1\left(\begin{array}{c}\tfrac12,\tfrac12\\ \tfrac32\end{array}\middle|\tfrac14\right)} = \frac{\pi}3$ and,
$$\frac1{36}\,_3F_2\left(\begin{array}{c}\tfrac32,\tfrac32,\tfrac32\\ \tfrac52,\tfrac52\end{array}\middle|\tfrac14\right) = -\,_3F_2\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) + \,_2F_1\left(\begin{array}{c}\tfrac12,\tfrac12\\ \tfrac32\end{array}\middle|\tfrac14\right) $$
$$\frac1{108}\,_4F_3\left(\begin{array}{c}\tfrac32,\tfrac32,\tfrac32,\tfrac32\\ \tfrac52,\tfrac52,\tfrac52\end{array}\middle|\tfrac14\right) = -\,_4F_3\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) + \,_3F_2\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) $$
$$\frac1{324}\,_5F_4\left(\begin{array}{c}\tfrac32,\tfrac32,\tfrac32,\tfrac32,\tfrac32\\ \tfrac52,\tfrac52,\tfrac52,\tfrac52\end{array}\middle|\tfrac14\right) = -\,_5F_4\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) + \,_4F_3\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) $$
then,
$$S=\sum_{n=1}^\infty\frac{\Gamma\left(n+\frac{1}{2}\right)}{(2n+1)^4\,4^n\,n!} = -\sqrt{\pi}+\sqrt{\pi}\,_5F_4\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) \approx 0.0028056$$
(Added 2023): Borrowing insights from user153012, we can then express the last $_pF_q$ simply as,
$$_5F_4\left(\begin{array}{c}\tfrac12,\tfrac12,\tfrac12,\tfrac12,\tfrac12\\ \tfrac32,\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\tfrac14\right) = \frac{\pi}{12}\zeta(3)+\frac{27}{32}\operatorname{Cl}_4\big(\tfrac23\pi\big)$$
where $\operatorname{Cl}_n(x)$ is the Clausen function. Hence,
$$S = \sqrt{\pi}\left(-1+\frac{\pi}{12}\zeta(3)+\frac{27}{32}\operatorname{Cl}_4\big(\tfrac23\pi\big)\right)$$